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This paper is a continuation of our previous analysis (2) of partition functions
zeros in models with first-order phase transitions and periodic boundary condi-
tions. Here it is shown that the assumptions under which the results of ref. 2
were established are satisfied by a large class of lattice models. These models are
characterized by two basic properties: The existence of only a finite number of
ground states and the availability of an appropriate contour representation.
This setting includes, for instance, the Ising, Potts, and Blume–Capel models at
low temperatures. The combined results of ref. 2 and the present paper provide
complete control of the zeros of the partition function with periodic boundary
conditions for all models in the above class.
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This paper is dedicated to Elliott Lieb on the occasion of his 70th birthday.
Elliott was thesis advisor to one of us (J.T.C.) and an inspiration to us all.

1. INTRODUCTION

1.1. Overview

In the recent papers, (1, 2) we presented a general theory of partition function
zeros in models with periodic boundary conditions and interaction
depending on one complex parameter. The analysis was based on a set of



assumptions, called Assumptions A and B in ref. 2, which are essentially
statements concerning differentiability properties of certain free energies
supplemented by appropriate non-degeneracy conditions. On the basis of
these assumptions we characterized the topology of the resulting phase
diagram and showed that the partition function zeros are in one-to-one
correspondence with the solutions to specific (and simple) equations. In
addition, the maximal degeneracy of the zeros was proved to be bounded
by the number of thermodynamically stable phases, and the distance
between the zeros and the corresponding solutions was shown to be
generically exponentially small in the linear size of the system.

The reliance on Assumptions A and B in ref. 2 permitted us to split
the analysis of partition function zeros into two parts, which are distinct
in both mathematical and physical content: one concerning the zeros of
a complex (in fact, analytic) function—namely the partition function with
periodic boundary conditions—subject to specific requirements, and the
other concerning the control of the partition function in a statistical
mechanical model depending on one complex parameter. The former part
of the analysis was carried out in ref. 2; the latter is the subject of this
paper. Explicitly, the principal goal of this paper can be summarized as
follows: We will define a large class of lattice spin models (which includes
several well-known systems, e.g., the Ising and Blume–Capel models) and
show that Assumptions A and B are satisfied for every model in this class.
On the basis of ref. 2, for any model in this class we then have complete
control of the zeros of the partition function with periodic boundary
conditions.

The models we consider are characterized by two properties: the
existence of only a finite number of ground states and the availability of a
contour representation. In our setting, the term ground state will simply
mean a constant—or, after some reinterpretations, a periodic—infinite
volume spin configuration. Roughly speaking, the contour representation
will be such that the contours correspond to finite, connected subsets of the
lattice where the spin configuration differs from any of the possible ground
states. A precise definition of these notions is a bit technical; details will be
provided in Section 3. Besides these properties, there will also be a few
quantitative requirements on the ground state energies and the scaling of
the excess contour energy with the size of the contour—the Peierls condi-
tion—see Sections 2.1 and 3.2.

These two characteristic properties enable us to apply Pirogov–Sinai
theory—a general method for determining low-temperature properties of
a statistical mechanical model by perturbing about zero-temperature. The
first formulation of this perturbation technique (16, 17) applied to a class of
models with real, positive weights. The original ‘‘Banach space’’ approach
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of refs. 16 and 17 was later replaced by inductive methods, (9) which resulted
in a complete classification of translation-invariant Gibbs states. (21) The
inductive techniques also permitted a generalization of the characterization
of phase stability/coexistence to models with complex weights. (5) However,
most relevant for our purposes are the results of ref. 6, dealing with finite-
size scaling in the vicinity of first-order phase transitions. There Pirogov–
Sinai theory was used to derive detailed asymptotics of finite volume parti-
tion functions. The present paper provides, among other things, a variant
of ref. 6 that ensures appropriate differentiability of the so-called meta-
stable free energies as required for the analysis of partition function zeros.

The remainder of this paper is organized as follows. Section 1.2 out-
lines the class of models of interest. Section 1.3 defines the ground state
and excitation energies and introduces the torus partition function—the
main object of interest in this paper. Section 2.1 lists the assumptions on
the models and Section 2.2 gives the statements of the main results of this
paper. These immediately imply Assumptions A and B of ref. 2 for all
models in the class considered. Sections 3 and 4 introduce the necessary
tools from Pirogov–Sinai theory. These are applied in Section 5 to prove
the main results of the paper.

1.2. Models of Interest

Here we define the class of models to be considered in this paper.
Most of what is to follow in this and the forthcoming sections is inspired
by classic texts on spin models, Gibbs states, and Pirogov–Sinai theory,
e.g., refs. 8, 18, 20, and 21.

We will consider finite-state spin models on the d-dimensional hyper-
cubic lattice Zd for d \ 2. At each site x ¥ Zd the spin, denoted by sx, will
take values in a finite set S. A spin configuration s=(sx)x ¥ Z

d is an
assignment of a spin to each site of the lattice. The interaction Hamiltonian
will be described using a collection of potentials (FL), where L runs over
all finite subsets of Zd. The FL are functions on configurations from SZ

d

with the following properties:

(1) The value FL(s) depends only on sx with x ¥ L.
(2) The potential is translation invariant, i.e., if sŒ is a translate of s

and LŒ is the corresponding translate of L, then FLŒ(s)=FL(sŒ).
(3) There exists an R \ 1 such that FL — 0 for all L with diameter

exceeding R+1.

Here the diameter of a cubic box with L× · · · ×L sites is defined to be L
while for a general A … Zd it is the diameter of the smallest cubic box con-
taining A. The constant R is called the range of the interaction.
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Remark 1.1. Condition (2) has been included mostly for conve-
nience of exposition. In fact, all of the results of this paper hold under the
assumption that FL are periodic in the sense that FLŒ(s)=FL(sŒ) holds for
L and s related to LŒ and sŒ by a translation from (aZ)d for some fixed
integer a. This is seen by noting that the periodic cases can always be con-
verted to translation-invariant ones by considering block-spin variables and
integrated potentials.

As usual, the energy of a spin configuration is specified by the Hamil-
tonian. Formally, the Hamiltonian is represented by a collection of func-
tions (bHL) indexed by finite subsets of Zd, where bHL is defined by the
formula

bHL(s)= C
LŒ: LŒ 5 L ]”

FLŒ(s). (1.1)

(The superfluous b, playing the role of the inverse temperature, appears
only to maintain formal correspondence with the fundamental formulas of
statistical mechanics.) In light of our restriction to finite-range interactions,
the sum is always finite.

We proceed by listing a few well known examples of models in the
above class. With the exception of the second example, the range of each
interaction is equal to 1:

Ising Model. Here S={−1, +1} and FL(s) – 0 only for L con-
taining a single site or a nearest-neighbor pair. In this case we have

FL(s)=˛
−hsx, if L={x},

−Jsxsy, if L={x, y} with |x−y|=1.
(1.2)

Here J is the coupling constant, h is an external field and |x−y| denotes
the Euclidean distance between x and y.

Perturbed Ising Model. Again S={−1, +1}, but now we allow
for arbitrary finite range perturbations. Explicitly,

FL(s)=˛
−hsx, if L={x},

−JL <x ¥ L sx if |L| \ 2 and diam L [ R+1.
(1.3)

The coupling constants JL are assumed to be translation invariant (i.e.,
JL=JLŒ if L and LŒ are translates of each other). The constant h is again
the external field.
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Blume–Capel Model. In this case S={−1, 0, +1} and FL(s) — 0
unless L is just a single site or a nearest-neighbor pair. Explicitly, we have

FL(s)=˛
−ls2

x −hsx, if L={x},

J(sx −sy)2, if L={x, y} with |x−y|=1.
(1.4)

Here J is the coupling constant, l is a parameter favoring ±1 against
0-spins and h is an external field splitting the symmetry between +1
and −1.

Potts Model in an External Field. The state space has q elements,
S={1,..., q} and FL is again nontrivial only if L is a one-element set or a
pair of nearest-neighbor sites. Explicitly,

FL(s)=˛
−hdsx, 1, if L={x},

−Jdsx, sy , if L={x, y} with |x−y|=1.
(1.5)

Here ds, sŒ equals one if s=sŒ and zero otherwise, J is the coupling con-
stant and h is an external field favoring spin value 1. Actually, the results
of this paper will hold only for the low-temperature regime (which in our
parametrization corresponds to J ± log q); a more general argument
covering all temperatures (but under the condition that q is sufficiently
large) will be presented elsewhere. (3, 4)

Any of the constants appearing in the above Hamiltonian can in prin-
ciple be complex. However, not all complex values of, e.g., the coupling
constant will be permitted by our additional restrictions. See Section 2.3 for
more discussion.

1.3. Ground States, Excitations, and Torus Partition Function

The key idea underlying our formulation is that constant configura-
tions represent the potential ground states of the system. (A precise state-
ment of this fact appears in Assumption C2 later.) This motivates us to
define the dimensionless ground state energy density em associated with spin
m ¥S by the formula

em= C
L: L ¦ 0

1
|L|
FL(sm), (1.6)

where |L| denotes the cardinality of the set L and where sm is the spin con-
figuration that is equal to m at every site. By our restriction to finite-range
interactions, the sum is effectively finite.

Partition Function Zeros at First-Order Phase Transitions 101



The constant configurations represent the states with minimal energy;
all other configurations are to be regarded as excitations. Given a spin
configuration s, let BR(s) denote the union of all cubic boxes L … Zd of
diameter 2R+1 such that s is not constant in L. We think of BR(s) as the
set on which s is ‘‘bad’’ in the sense that it is not a ground state at scale R.
The set BR(s) will be referred to as the R-boundary of s. Then the excita-
tion energy E(s) of configuration s is defined by

E(s)= C
x ¥ BR(s)

C
L: x ¥ L

1
|L|
FL(s). (1.7)

To ensure that the sum is finite (and therefore meaningful) we will only
consider the configurations s for which BR(s) is a finite set.

The main quantity of interest in this paper is the partition function
with periodic boundary conditions which we now define. Let L \ 2R+1,
and let TL denote the torus of L×L× · · · ×L sites in Zd, which can be
thought of as the factor of Zd with respect to the action of the subgroup
(LZ)d. Let us consider the Hamiltonian bHL: STL Q C defined by

bHL(s)= C
L: L … TL

FL(s), s ¥STL, (1.8)

where FL are retractions of the corresponding potentials from Zd to TL.
(Here we use the translation invariance of FL.) Then the partition function
with periodic boundary conditions in TL is defined by

ZperL = C
s ¥S

TL

e−bHL(s). (1.9)

In general, ZperL is a complex quantity which depends on all parameters of
the Hamiltonian. We note that various other partition functions will play
an important role throughout this paper. However, none of these will be
needed for the statement of our main results in Section 2, so we postpone
the additional definitions and discussion to Section 4.

We conclude this section with a remark concerning the interchangea-
bility of the various spin states. There are natural examples (e.g., the Potts
model) where several spin values are virtually indistinguishable from each
other. To express this property mathematically, we will consider the situa-
tion where there exists a subgroup G of the permutations of S such that if
p ¥G then ep(m)=em and E(p(s))=E(s) for each m ¥S and each config-
uration s with finite BR(s), where p(s) is the spin configuration taking
value p(sx) at each x. (Note that BR(p(s))=BR(s) for any such permuta-
tion p.) Then we call two spin states m and n interchangeable if m and n
belong to the same orbit of the group G onS.
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While this extra symmetry has absolutely no effect on the contour
analysis of the torus partition sum, it turns out that interchangeable spin
states cannot be treated separately in our analysis of partition function
zeros. (The precise reason is that interchangeable spin states would violate
our non-degeneracy conditions; see Assumption C3, C4 and Theorems 2.33,
2.34 later.) To avoid this difficulty, we will use the factor set R=S/G
instead of the original index set S when stating our assumptions and
results. In accordance with the notation of ref. 2, we will also use r to
denote the cardinality of the set R, i.e., R={1, 2,..., r}, and qm to denote
the cardinality of the orbit corresponding to m ¥R.

2. ASSUMPTIONS AND RESULTS

In this section we list our precise assumptions on the models of interest
and state the main results of this paper.

2.1. Assumptions

We will consider the setup outlined in Sections 1.2 and 1.3 with the
additional assumption that the parameters of the Hamiltonian depend on
one complex parameter z which varies in some open subset O2 of the
complex plane. Typically, we will take z=eh or z=e2h where h is an exter-
nal field; see the examples at the end of Section 1.2. Throughout this paper
we will assume that the spin space S, the factor set R, the integers qm and
the range of the interaction are independent of the parameter z. We will
also assume that the spatial dimension d is no less than two.

The assumptions below will be expressed in terms of complex deriva-
tives with respect to z. For brevity of exposition, let us use the standard
notation

“z=
1
2
1 “
“x

−i
“

“y
2 and “z̄=

1
2
1 “
“x

+i
“

“y
2 (2.1)

for the derivatives with respect to z and z̄, respectively. Here x=Re z and
y=Im z. Our assumptions will be formulated for the exponential weights

jL(s, z)=e−FL(s, z), rz(s)=e−E(s, z), and hm(z)=e−em(z), (2.2)

where we have now made the dependence on z notationally explicit. In
terms of the hm’s and the quantity

h(z)=max
m ¥R

|hm(z)| (2.3)
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we define the setLa(m) by

La(m)={z ¥ O2 : |hm(z)| \ h(z) ea}. (2.4)

Informally, La(m) is the set of z for which m is ‘‘almost’’ a ground state of
the Hamiltonian.

Since we want to refer back to Assumptions A and B of ref. 2, we will
call our new hypothesis Assumption C.

Assumption C. There exist a domain O2 … C and constants
a, M, y ¥ (0,.) such that the following conditions are satisfied.

(0) For each s ¥SZ
d
and each finite L … Zd, the function

z W jL(s, z) is holomorphic in O2.
(1) For all m ¥S, all z ¥ O2, and all a=0, 1, 2, the ground state

weights obey the bounds

|“azhm(z)| [ Mah(z). (2.5)

In addition, the quantity h(z) is uniformly bounded away from zero in O2.
(2) For every configuration s with finite R-boundary BR(s), the

Peierls condition

|“azrz(s)| [ (M |BR(s)|)a (e−yh(z)) |BR(s)| (2.6)

holds for all z ¥ O2 and a=0, 1, 2.
(3) For all distinct m, n ¥R and all z ¥La(m) 5La(n), we have

:“zhm(z)
hm(z)

−
“zhn(z)
hn(z)
: \ a. (2.7)

(4) If Q …R is such that |Q| \ 3, then for any z ¥4m ¥ Q La(m)
we assume that the complex quantities vm(z)=hm(z)−1

“zhm(z), m ¥ Q,
regarded as vectors in R2, are vertices of a strictly convex polygon. Expli-
citly, we demand that the bound

inf 3 :vm(z)− C
n ¥ Q0{m}

wnvn(z):: wn \ 0, C
n ¥ Q0{m}

wn=14 \ a (2.8)

holds for every m ¥ Q and every z ¥4n ¥ Q La(n).

Assumptions C0–C2 are very natural; indeed, they are typically a
consequence of the fact that the potentials jL(s, z)—and hence also hm(z)
and rz(s)—arise by analytic continuation from the positive real axis.
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Assumptions C3 and C4 replace the ‘‘standard’’ multidimensional non-
degeneracy conditions which are typically introduced to control the topo-
logical structure of the phase diagram, see, e.g., refs. 16, 17, and 20.
(However, unlike for the ‘‘standard’’ non-degeneracy conditions, here this
control requires a good deal of extra work, see ref. 2.) Assumption C4
is only important in the vicinity of multiple coexistence points (see Sec-
tion 3.2); otherwise, it can be omitted.

Remark 2.1. For many models, including the first three of our
examples, the partition function has both zeros and poles, and sometimes
even involves non-integer powers of z. In this situation it is convenient to
multiply the partition function by a suitable power of z to obtain a func-
tion that is analytic in a larger domain. Typically, this different normaliza-
tion also leads to a larger domain O2 for which Assumption C holds.
Taking, e.g., the Ising model with z=e2h, one easily verifies that for low
enough temperatures, Assumption C holds everywhere in the complex
plane—provided we replace the term −hsx by −h(sx+1). By contrast, in
the original representation (where j{x}(s, z)=(`z)sx ), one needs to take
out a neighborhood of the negative real axis (or any other ray from zero to
infinity) to achieve the analyticity required by Assumption C0.

Remark 2.2. If we replace the term −hsx in (1.2)–(1.4) by
−h(sx+1), Assumption C (with z=e2h for the Ising models, and z=eh for
the Blume–Capel and Potts model) holds for all four examples listed in
Section 1.2, provided that the nearest-neighbor couplings are ferromagnetic
and the temperature is low enough. (For the perturbed Ising model, one
also needs that the nearest-neighbor coupling is sufficiently dominant.)

2.2. Main Results

Now we are in a position to state our main results, which show that
Assumptions A and B from ref. 2 are satisfied and hence our conclusions
concerning the partition function zeros hold. The structure of these
theorems parallels the structure of Assumptions A and B. We caution the
reader that the precise statement of these results is quite technical. For a
discussion of the implications of these theorems, see Section 2.3. The first
theorem establishes the existence of metastable free energies and their rela-
tion to the quantities hm.

Theorem A. Let M ¥ (0,.) and a ¥ (0,.). Then there is a con-
stant y0 depending on M, a, the number of spin states |S| and the dimen-
sion d such that if Assumption C holds for the constants M, a, some open
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domain O2 … C and some y \ y0, then there are functions zm: O2 Q C, m ¥R,
for which the following holds:

(1) There are functions sm: O2 Q C, m ¥R, such that zm(z) can be
expressed as

zm(z)=hm(z) e sm(z) and |sm(z)| [ e−y/2. (2.9)

In particular, the quantity z(z)=maxm ¥R |zm(z)| is uniformly positive in O2.

(2) Each function zm, viewed as a function of two real variables
x=Re z and y=Im z, is twice continuously differentiable on O2 and satis-
fies the Cauchy–Riemann equations “z̄zm(z)=0 for all z ¥Sm, where

Sm={z ¥ O2 : |zm(z)|=z(z)}. (2.10)

In particular, zm is analytic in the interior ofSm.

(3) For any pair of distinct indices m, n ¥R and any z ¥Sm 5Sn we
have

:“zzm(z)
zm(z)

−
“zzn(z)
zn(z)
: \ a−2e−y/2. (2.11)

(4) If Q …R is such that |Q| \ 3, then for any z ¥4m ¥ Q Sm,

vm(z)=
“zzm(z)
zm(z)

, m ¥ Q, (2.12)

are the vertices of a strictly convex polygon in C 4 R2.

Theorem A ensures the validity of Assumption A in ref. 2 for any
model satisfying Assumption C with y sufficiently large. Assumption A, in
turn, allows us to establish several properties of the topology of the phase
diagram, see Section 2.3 later for more details.

Following ref. 2, we will refer to the indices in R as phases, and call a
phase m ¥R stable at z if |zm(z)|=z(z). We will say that a point z ¥ O2 is a
point of phase coexistence if there are at least two phases m ¥R which are
stable at z. In ref. 2 we introduced these definitions without further moti-
vation, anticipating, however, the present work which provides the techni-
cal justification of these concepts. Indeed, using the expansion techniques
developed in Sections 3 and 4, one can show that, for each m ¥S that cor-
responds to a stable phase in R, the finite volume states with m-boundary
conditions tend to a unique infinite-volume limit O ·Pm in the sense of weak
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convergence on linear functionals on local observables. (Here a local
observable refers to a function depending only on a finite number of spins.)
The limit state is invariant under translations of Zd, exhibits exponential
clustering, and is a small perturbation of the ground state sm in the sense
that Odsx, kPm=dm, k+O(e−y/2) for all x ¥ Zd.

Remark 2.3. Note that two states O ·Pm and O ·PmŒ are considered as
two different versions of the same phase if m and mŒ are indistinguishable,
in accordance with our convention that R, and not S, labels phases.
Accordingly, the term phase coexistence refers to the coexistence of distin-
guishable phases, and not to the coexistence of two states labelled by dif-
ferent indices in the same orbit R. This interpretation of a ‘‘thermodynamic
phase’’ agrees with that used in physics, but disagrees with that sometimes
used in the mathematical physics literature.

While Theorem A is valid in the whole domain O2, our next theorem
will require that we restrict ourselves to a subset O … O2 with the property
that there exists some E > 0 such that for each point z ¥ O, the disc DE(z) of
radius E centered at z is contained in O2. (Note that this condition requires
O to be a strict subset of O2, unless O2 consists of the whole complex plane.)
In order to state the next theorem, we will need to recall some notation
from ref. 2. Given any m ¥R and d > 0, let Sd(m) denote the region where
the phase m is ‘‘almost stable,’’

Sd(m)={z ¥ O : |zm(z)| > e−dz(z)}. (2.13)

For any Q …R, we also introduce the region where all phases from Q are
‘‘almost stable’’ while the remaining ones are not,

Ud(Q)= 3
m ¥ Q

Sd(m)< 0
n ¥ Q

c
Sd/2(n), (2.14)

with the bar denoting the set closure.

Theorem B. Let M, a, E ¥ (0,.), and let y \ y0, where y0 is the
constant from Theorem A, and let o=y/4. Let O2 … C and O … O2 be open
domains such that that Assumption C holds in O2 and DE(z) … O2 for all
z ¥ O. Then there are constants C0 (depending only on M), M0 (depending
on M and E), and L0 (depending on d, M, y, and E) such that for each
m ¥R and each L \ L0 there is a function z

(L)
m : So/L(m) Q C such that the

following holds for all L \ L0:

(1) The function ZperL is analytic in O2.
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(2) Each z (L)
m is non-vanishing and analytic inSo/L(m). Furthermore,

: log z
(L)
m (z)
zm(z)
: [ e−yL/8 (2.15)

and

:“z log
z (L)

m (z)
zm(z)
:+:“z̄ log

z (L)
m (z)
zm(z)
: [ e−yL/8 (2.16)

hold for all m ¥R and all z ¥So/L(m).

(3) For each m ¥R, all a \ 1, and all z ¥So/L(m), we have

:“azz (L)
m (z)
z (L)

m (z)
: [ (a!)2 Ma

0. (2.17)

Moreover, for all distinct m, n ¥R and all z ¥So/L(m) 5So/L(n),

:“zz (L)
m (z)
z (L)

m (z)
−
“zz

(L)
n (z)
z (L)

n (z)
: \ a−2e−y/2. (2.18)

(4) For any Q …R, the difference

XQ, L(z)=ZperL (z)− C
m ¥ Q

qm[z (L)
m (z)]Ld

(2.19)

satisfies the bound

|“azXQ, L(z)| [ a! (C0Ld)a+1 z(z)Ld 1 C
m ¥R

qm
2 e−yL/16 (2.20)

for all a \ 0 and all z ¥Uo/L(Q).

Theorem B proves the validity of Assumption B from ref. 2. Together
with Theorem A, this in turn allows us to give a detailed description of the
positions of the partition function zeros for all models in our class, see
Section 2.3.

The principal result of Theorem B is stated in part (4): The torus par-
tition function can be approximated by a finite sum of terms—one for each
‘‘almost stable’’ phase m ¥R—which have well controlled analyticity
properties. As a consequence, the zeros of the partition function arise as a
result of destructive interference between almost stable phases, and all
zeros are near to the set of coexistence points G=1m ] n Sm 5Sn; see Sec-
tion 2.3 for further details. Representations of the form (2.19) were crucial

108 Biskup et al.



for the analysis of finite-size scaling near first-order phase transitions. (6)

The original derivation goes back to ref. 5. In our case the situation is
complicated by the requirement of analyticity; hence the restriction to
z ¥Uo/L(Q) in (4).

2.3. Discussion

As mentioned previously, Theorems A and B imply the validity of
Assumptions A and B of ref. 2, which in turn imply the principal conclu-
sions of ref. 2 for any model of the kind introduced in Section 1.2 that
satisfies Assumption C with y sufficiently large. Instead of giving the full
statements of the results of ref. 2, we will only describe these theorems on a
qualitative level. Readers interested in more details are referred to Section 2
of ref. 2.

Our first result concerns the set of coexistence points,G=1m ] n Sm 5Sn,
giving rise to the complex phase diagram. Here Theorem 2.1 of ref. 2
asserts that G is the union of a set of simple, smooth (open and closed)
curves such that exactly two phases coexist at any interior point of the
curve, while at least three phases coexist at the endpoints—these are the
multiple points. Moreover, in each compact set, any two such curves cannot
get too close without intersecting and there are only a finite number of
multiple points. These properties are of course direct consequences of the
non-degeneracy conditions expressed in Theorems A3 and A4.

Having discussed the phase diagram, we can now turn our attention to
the zeros of ZperL . The combined results of Theorems 2.2–2.4 of ref. 2 yield
the following: First, all zeros lie within O(L−d) of the set G. Second, along
the two-phase coexistence lines with stable phases m, n ¥R, the zeros are
within O(e−cL), for some c > 0, of the solutions to the equations

q1/Ld

m |zm(z)|=q1/Ld

n |zn(z)|, (2.21)

Ld Arg(zm(z)/zn(z))=p mod 2p. (2.22)

Consecutive solutions to these equations are separated by distances of
order L−d, i.e., there are of the other Ld zeros per unit length of the coexis-
tence line. Scaling by Ld, this allows us to define a density of zeros along
each two-phase coexistence line, which in the limit L Q. turns out to be a
smooth function varying only over distances of order one.

Near the multiple points the zeros are still in one-to-one correspon-
dence with the solutions of a certain equation. However, our control of the
errors here is less precise than in the two-phase coexistence region. In any
case, all zeros are at most (r−1)-times degenerate. In addition, for models
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with an Ising-like plus-minus symmetry, Theorem B of ref. 2 gives condi-
tions under which zeros will lie exactly on the unit circle. This is the local
Lee–Yang theorem.

Let us demonstrate these results in the context of some of our
examples from Section 1.2. We will begin with the standard Ising model at
low temperatures. In this case there are two possible phases, labeled +
and − , with the corresponding metastable free energies given as functions
of z=e2h by

z±(z)=exp{±h+e−2dJ + 2h+O(e−(4d−2) J)}. (2.23)

Symmetry considerations now imply that |z+(z)|=|z−(z)| if and only if
Re h=0, i.e., |z|=1, and, as already known from the celebrated Lee–Yang
Circle Theorem, (11) the same is true for the actual zeros of ZperL . However,
our analysis allows us to go further and approximately calculate the solu-
tions to the system (2.21) and (2.22), which shows that the zeros of ZperL lie
near the points z=e ihk, where k=0, 1,..., Ld −1 and

hk=
2k+1

Ld p+2e−2dJ sin 12k+1
Ld p
2+O(e−(4d−2) J). (2.24)

Of course, as L increases, higher and higher-order terms in e−J are needed
to pinpoint the location of any particular zero (given that the distance of
close zeros is of the order L−d ). Thus, rather than providing the precise
location of any given zero, the above formula should be used to calculate
the quantity hk+1 −hk, which is essentially the distance between two conse-
cutive zeros. The resulting derivation of the density of zeros is new even in
the case of the standard Ising model. A qualitative picture of how the zeros
span the unit circle is provided in Fig. 1.

A similar discussion applies to the ‘‘perturbed’’ Ising model, provided
the nearest-neighbor coupling is ferromagnetic and the remaining terms in
the Hamiltonian are small in some appropriate norm. In the case of general
multi-body couplings, the zeros will lie on a closed curve which, generically,
is not a circle. (For instance, this is easily verified for the three-body
interaction.) However, if only even terms in (sx) appear in the Hamilto-
nian, the models have the plus-minus symmetry required by Theorem 2.5 of
ref. 2 and all of the zeros will lie exactly on the unit circle. This shows that
the conclusions of the Lee–Yang theorem hold well beyond the set of
models to which the classic proof applies.

Finally, in order to demonstrate the non-trivial topology of the set of
zeros, let us turn our attention to the Blume–Capel model. In this case
there are three possible stable phases, each corresponding to a particular
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Fig. 1. A schematic figure of the solutions to (2.21) and (2.22) giving the approximate loca-
tions of partition function zeros of the Ising model in parameter z which is related to the
external field h by z=e2h. The plot corresponds to dimension d=2 and torus side L=8. The
expansion used for calculating the quantities z± is shown in (2.23). To make the non-unifor-
mity of the spacing between zeros more apparent, the plot has been rendered for the choice
e2J=2.5 even though this is beyond the region where we can prove convergence of our
expansions.

spin value. In terms of the complex parameter z=eh, the corresponding
metastable free energies are computed from the formulas

z+(z)=z el exp{z−1e−2dJ−l+dz−2 e−(4d−2) J−2l+O(e−4dJ)},

z−(z)=z−1el exp{ze−2dJ−l+dz2 e−(4d−2) J−2l+O(e−4dJ)},

z0(z)=exp{(z+z−1) e−2dJ+l+d(z2+z−2) e−(4d−2) J+2l+O(e−4dJ)}.

(2.25)

Here it is essential that the energy of the plus-minus neighboring pair
exceeds that of zero-plus (or zero-minus) by a factor of four.

A calculation (1) shows that the zeros lie on two curves which are
symmetrical with respect to circle inversion and which may coincide along
an arc of the unit circle, depending on the value of l; see Fig. 2. As l
increases, the shared portion of these curves grows and, for positive l
exceeding a constant of order e−2dJ, all zeros will lie on the unit circle. Note
that by the methods of ref. 13, the last result can be established (12) for all
temperatures provided l is sufficiently large, while our results give the
correct critical l but only hold for low temperatures.

3. CONTOUR MODELS AND CLUSTER EXPANSION

Let us turn to the proofs. We begin by establishing the necessary tools
for applying Pirogov–Sinai theory. Specifically, we will define contours and
show that spin configurations and collections of matching contours are

Partition Function Zeros at First-Order Phase Transitions 111



(a) (b) (c)

Fig. 2. A picture demonstrating the location of partition function zeros of the Blume–Capel
model. Here the zeros concentrate on two curves, related by the circle inversion, which may or
may not coincide along an arc of the unit circle. There are two critical values of l, denoted
by l±c , both of order e−2dJ, such that for l < l−

c < 0, the two curves do not intersect; see (a).
Once l increases through l−

c , a common piece starts to develop which grows as l increases
through the interval [l−

c , l+c ], see (b) and (c). Finally, both curves collapse on the unit circle
at l=l+c > 0 and stay there for all l > l+c . With the exception of the ‘‘bifurcation’’ points, the
zeros lie exactly on the unit circle along the shared arc. The non-uniform spacing of the zeros
in (b) comes from the influence of the ‘‘unstable’’ phase near the multiple points.

in one-to-one correspondence. This will induce a corresponding relation
between the contour and spin partition functions. We will also summarize
the facts we will need from the theory of cluster expansions.

3.1. Contours

The goal of this section is to represent spin configurations in terms
of contours. Based on the fact—following from Assumption C—that the
constant configurations are the only possible minima of (the real part of )
the energy, we will define contours as the regions where the spin configu-
ration is not constant.

Recalling our assumption L \ 2R+1, let s be a spin configuration on
TL and let BR(s) be the R-boundary of s. We equip BR(s) with a graph
structure by placing an edge between any two distinct sites x, y ¥ BR(s)
whenever x and y are contained in a cubic box L … TL of diameter 2R+1
where s is not constant. We will denote the resulting graph by GR(s). Some
of our definitions will involve the connectivity induced by the graph GR(s)
but we will also use the usual concept of connectivity on TL (or Zd): We
say that a set of sites L … TL is connected if every two sites from L can be
connected by a nearest-neighbor path on L. Note that the connected com-
ponents of BR(s) and the (vertex sets corresponding to the) components of
the graph GR(s) are often very different sets.

Now we are ready to define contours. We start with contours on Zd,
and then define contours on the torus in such a way that they can be easily
embedded into Zd.
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Definition 3.1. A contour on Zd is a pair Y=(supp Y, sY) where
supp Y is a finite connected subset of Zd and where sY is a spin configura-
tion on Zd such that the graph GR(sY) is connected and BR(sY)=supp Y.

A contour on TL is a pair Y=(supp Y, sY) where supp Y is a non-
empty, connected subset of TL with diameter strictly less than L/2 and
where sY is a spin configuration on TL such that the graph GR(sY) is con-
nected and BR(sY)=supp Y.

A contour network on TL is a pair N=(suppN, sN), where N is a
(possibly empty or non-connected) subset of TL and where sN is a spin
configuration on TL such that BR(sN)=suppN and such that the diam-
eter of the vertex set of each component of GR(sN) is at least L/2.

Note that each contour on TL has an embedding into Zd which is
unique up to translation by multiples of L. (Informally, we just need to
unwrap the torus without cutting through the contour.) As long as we
restrict attention only to finite contours, the concept of a contour network
has no counterpart on Zd, so there we will always assume thatN=”.

Having defined contours and contour networks on TL abstractly, our
next task is to identify the contours Y1,..., Yn and the contour network
N from a general spin configuration on TL. Obviously, the supports of
Y1,..., Yn will be defined as the vertex sets of the components of the graph
GR(s) with diameter less than L/2, while suppN will be the remaining
vertices in BR(s). To define the corresponding spin configurations we need
to demonstrate that the restriction of s to supp Yi (resp., suppN) can be
extended to spin configurations sYi

(resp., sN ) on TL such that BR(sYi
)=

supp Yi (resp., BR(sN)=suppN). It will turn out to be sufficient to show
that s is constant on the boundary of each connected component of
TL 0BR(s).

Given a set L … TL (or L … Zd), let “L denote the external boundary
of L, i.e., “L={x ¥ TL : dist(x, L)=1}. For the purposes of this section,
we also need to define the set L° which is just L reduced by the boundary
of its complement, L°=L0“(TL 0L). An immediate consequence of
Definition 3.1 (and the restriction to 2R+1 \ 3) is the following fact:

Lemma 3.2. Let (L, s) be either a contour or a contour network
on TL, and let C be a connected component of TL 0L°. Then s is constant
on C. If (L, s) is a contour on Zd, then s is constant on each connected
component C of Zd0L°, with L° now defined as L°=L0“(Zd0L).

Proof. Assume that s is not constant on C. Then there must exist a
pair of nearest-neighbor sites x, y ¥ C such that sx ] sy. But then x and all
of its nearest neighbors lie in L=BR(s). Since C 5 L°=” and x ¥ C, we
are forced to conclude that x ¥ L0L°. But that contradicts the fact that all
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of the neighbors of x also lie in L. The same proof applies to contours
on Zd. L

Definition 3.3. Let (L, s) be either a contour or a contour network
on TL and let C be a connected component of TL 0L. The common value
of the spin on this component in configuration s will be called the label
of C. The same definition applies to contours on Zd, and to connected
components C of Zd0L.

Let L … TL be a connected set with diameter less than L/2. Since the
diameter was defined by enclosure into a ‘‘cubic’’ box (see Section 1.2), it
follows that each such L has a well defined exterior and interior. Indeed,
any box of side less than L/2 enclosing L contains less than (L/2)d [ Ld/2
sites, so we can define the exterior of L, denoted by Ext L, to be the unique
component of TL 0L that contains more than Ld/2 sites. The interior Int L
is defined simply by putting Int L=TL 0(L 2 Ext L). On the other hand, if
L is the union of disjoint connected sets each with diameter at least L/2 we
define Ext L=” and Int L=TL 0L. These definitions for connected sets
imply the following definitions for contours on TL:

Definition 3.4. Let Y be a contour or a contour network on TL. We
then define the exterior of Y, denoted by Ext Y, as the set Ext supp Y, and
the interior of Y, denoted by Int Y, as the set Int supp Y. For each m ¥S,
we let Intm Y be the union of all components of Int Y with label m. If Y is
a contour on TL, we say that Y is a m-contour if the label of Ext Y is m.

Analogous definitions apply to contours on Zd, except that the
exterior of a contour Y is now defined as the infinite component of
Zd0 supp Y, while the interior is defined as the union of all finite compo-
nents of Zd0 supp Y.

While most of the following statements can be easily modified to hold
for Zd as well as for the torus TL, for the sake of brevity, we henceforth
restrict ourselves to the torus.

Lemma 3.5. Let R \ 1 and fix L > 2R+1. Let s be a spin configu-
ration on TL and let L be either the vertex set of a component of the graph
GR(s) with diameter less than L/2 or the union of the vertex sets of all
components with diameter at least L/2. Let LŒ be of the same form with
LŒ ] L. Then exactly one of the following is true:

(1) L 2 Int L … Int LŒ and LŒ 2 Ext LŒ … Ext L, or
(2) LŒ 2 Int LŒ … Int L and L 2 Ext L … Ext LŒ, or
(3) L 2 Int L … Ext LŒ and LŒ 2 Int LŒ … Ext L.
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Proof. It is clearly enough to prove the first half of each of the
statements (1)–(3), since the second half follow from the first by taking
complements (for example in (3), we just use that L 2 Int L … Ext LŒ
implies TL 0(L 2 Int L) ‡ TL 0Ext LŒ, which is nothing but the statement
that LŒ 2 Int LŒ … Ext L by our definition of interiors and exteriors).

In order to prove the first halves of the statements (1)–(3), we first
assume that both L and LŒ are vertex sets of components of the graph
GR(s) with diameter less than L/2. Clearly, since L and LŒ correspond to
different components of GR(s), we have L 5 LŒ=”. Moreover, L and LŒ
are both connected (as subsets of TL ) so we have either L … Int LŒ or
L … Ext LŒ and vice versa. Hence, exactly one of the following four state-
ments is true:

(a) L … Int LŒ and LŒ … Int L, or

(b) L … Int LŒ and LŒ … Ext L, or

(c) L … Ext LŒ and LŒ … Int L, or

(d) L … Ext LŒ and LŒ … Ext L.

We claim that the case (a) cannot happen. Indeed, suppose that L … Int LŒ
and observe that if B is a box of size less than Ld/2 such that LŒ … B, then
Ext LŒ ‡ TL 0B. Hence Int LŒ … B. But then B also encloses L and thus
Ext L 5 Ext LŒ ‡ TL 0B ]”. Now LŒ 2 Ext LŒ is a connected set intersect-
ing Ext L but not intersecting L (because we assumed that L … Int LŒ). It
follows that LŒ 2 Ext LŒ … Ext L, and hence Int LŒ ‡ L 2 Int L. But then
we cannot have LŒ … Int L as well. This excludes the case (a) above, and
also shows that (b) actually gives L 2 Int L … Int LŒ, which is the first part
of the claim (1), while (c) gives LŒ 2 Int LŒ … Int L, which is the first part of
the claim (2).

Turning to the remaining case (d), let us observe that LŒ … Ext L
implies Int L 5 LŒ … Int L 5 Ext L=”. Since L 5 LŒ=” as well, this
implies (L 2 Int L) 5 LŒ=”. But L 2 Int L is a connected subset of TL, so
either L 2 Int L … Int LŒ or L 2 Int L … Ext LŒ. Since L … Ext LŒ excludes
the first possibility, we have shown that in case (d), we necessarily have
L 2 Int L … Ext LŒ, which is the first part of statement (3). This concludes
the proof of the lemma for the case when both L and LŒ are vertex sets of
components of the graph GR(s) with diameter less than L/2.

Since it is not possible that both L and LŒ are the union of the vertex
sets of all components of diameter at least L/2, it remains to show the
statement of the lemma for the case when L is the vertex set of a compo-
nent of the graph GR(s) with diameter less than L/2, while LŒ is the union
of the vertex sets of all components of diameter at least L/2. By definition
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we now have Ext LŒ=”, so we will have to prove that L 2 Int L … Int LŒ,
or equivalently, LŒ … Ext L. To this end, let us first observe that L 5 LŒ
=”, since L has diameter less than L/2 while all components of LŒ have
diameter at least L/2. Consider the set Int L. Since L has diameter less
than L/2, we can find a box B of side length smaller than L/2 that con-
tains L, and hence also Int L. But this implies that none of the components
of LŒ can lie in Int L (their diameter is too large). Since all these compo-
nents are connected subsets of Int L 2 Ext L, we conclude that they must
be part of Ext L. This gives the desired conclusion LŒ … Ext L. L

The previous lemma allows us to organize the components of GR(s)
into a tree-like structure by regarding LŒ to be the ‘‘ancestor’’ of L (or,
equivalently, L to be a ‘‘descendant’’ of LŒ) if the first option in Lemma 3.5
occurs. Explicitly, let WR(s) be the collection of all sets L … TL that are
either the vertex set of a connected component of GR(s) with diameter less
than L/2 or the union of the vertex sets of all connected components of
diameter at least L/2. We use L0 to denote the latter. If there is no com-
ponent of diameter L/2 or larger, we define L0=” and set Int L0=TL.

We now define a partial order on WR(s) by setting LO LŒ whenever
L 2 Int L … Int LŒ. If LO LŒ, but there is no Lœ ¥ WR(s) such that
LO LœO LŒ, we say that L is a child of LŒ and LŒ is a parent of L. Using
Lemma 3.5, one easily shows that no child has more than one parent,
implying that the parent child relationship leads to a tree structure on
WR(s), with root L0. This opens the possibility for inductive arguments
from the innermost contours (the leaves in the above tree) to the outermost
contours (the children of the root). Our first use of such an argument will
be to prove that unique labels can be assigned to the connected compo-
nents of the complement of BR(s) .

Lemma 3.6. Let s be a spin configuration on TL and let L be either
the vertex set of a component of the graph GR(s) with diameter less than
L/2 or the set of sites in BR(s) that are not contained in any such compo-
nent. If C is a connected component of TL 0L°, then s is constant on
C 5 L.

The proof is based on the following fact which is presumably well
known:

Lemma 3.7. Let A … Zd be a finite connected set with a connected
complement. Then “Ac is f-connected in the sense that any two sites
x, y ¥ “Ac are connected by a path on “Ac whose individual steps connect
only pairs of sites of Zd with Euclidean distance not exceeding`2.

116 Biskup et al.



Proof. The proof will proceed in three steps. In the first step, we will
prove that the edge boundary of A, henceforth denoted by dA, is a minimal
cutset. (Here we recall that a set of edges EŒ in a graph G=(V, E) is called
a cutset if the graph GŒ=(V, E0EŒ) has at least two components, and a
cutset EŒ is called minimal if any proper subset of EŒ is not a cutset.) In the
second step, we will prove that the dual of the edge boundary dA is a con-
nected set of facets, and in the third step we will use this fact to prove that
“Ac is f-connected.

Consider thus a set A which is connected and whose complement is
connected. Let dA be the edge boundary of A and let Ed be the set of
nearest-neighbor edges in Zd. The set dA is clearly a cutset since any nearest-
neighbor path joining A to Ac must pass through one of the edges in dA.
To show that dA is also minimal, let EŒ be a proper subset of dA, and let
e ¥ dA0EŒ. Since both A and Ac are connected, an arbitrary pair of sites
x, y ¥ Zd can be joined by a path that uses only edges in {e} 2 (Ed 0dA)
… Ed 0EŒ. Hence such EŒ is not a cutset which implies that dA is minimal as
claimed.

To continue with the second part of the proof, we need to introduce
some notation. As usual, we use the symbol Zg d to denote the set of all
points in Rd with half-integer coordinates. We say that a set c … Zg d is a
k-cell if the vertices in c are the ‘‘corners’’ of a k-dimensional unit cube
in Rd. A d-cell c … Zg d and a vertex x ¥ Zd are called dual to each other if x
is the center of c (considered as a subset of Rd ). Similarly, a facet f (i.e.,
a (d−1)-cell in Zg d) and a nearest-neighbor edge e … Zd are called dual to
each other if the midpoint of e (considered as a line segment in Rd) is the
center of f. The boundary “C of a set C of d-cells in Zg d is defined as
the set of facets that are contained in an odd number of cells in C, and the
boundary “F of a set F of facets in Zg d is defined as the set of (d−2)-cells
that are contained in an odd number of facets in F. Finally, a set of facets
F is called connected if any two facets f, fŒ ¥ F can be joined by a path of
facets f1=f,..., fn=fŒ in F such that for all i=1,..., n−1, the facets fi

and fi+1 share a (d−2)-cell in Zg d.
Note that an arbitrary finite set of facets F has empty boundary if and

only if there exists a finite set of cubes C such that F=“C, which follows
immediately from the fact Rd has trivial homology. Using this fact, we now
prove that the set F of facets dual to dA is connected. Let W be the set of
d-cells dual to A, and let F=“W be the boundary of W. We will now
prove that F is a connected set of facets. Indeed, since F=“W, we have
that F has empty boundary, “F=”. Assume that F has more than one
component, and let F̃ … F be one of them. Then F̃ and F0 F̃ are not con-
nected to each other, and hence share no (d−2)-cells. But this implies that
the boundary of F̃ must be empty itself, so that F̃ is the boundary of some
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set W̃. This in turn implies that the dual of F̃ is a cutset, contradicting the
fact that dA is a minimal cutset.

Consider now two points x, y ¥ “Ac … A. Then there are points
x̃, ỹ ¥ Ac such that {x, x̃} and {y, ỹ} are edges in dA. Taking into account
the connectedness of the dual of dA, we can find a sequence of edges
e1={x, x̃},..., en={y, ỹ} in dA such that for all k=1,..., n−1, the facets
dual to ek and ek+1 share a (d−2) cell in Zg d. As a consequence, the edges
ek and ek+1 are either parallel, and the four vertices in these two edges form
an elementary plaquette of the form {x, x+n1, x+n2, x+n1+n2} where n1

and n2 are unit vectors in two different lattice directions, or ek and ek+1 are
orthogonal and share exactly one endpoint. Since both ek and ek+1 are
edges in dA, each of them must contains a point in “Ac, and by the above
case analysis, the two points are at most `2 apart. The sequence e1,..., en

thus gives rise to a sequence of (not necessarily distinct) points x1,..., xn

¥ “Ac such that x=x1, y=xn and dist(xk, xk+1) [`2 for all k=1,...,
n−1. This proves that “Ac is f-connected. L

Proof of Lemma 3.6. Relying on Lemma 3.5, we will prove the
statement by induction from innermost to outermost components of diam-
eter less than L/2. Let L be the vertex set of a component of the graph
GR(s) with diameter less than L/2 and suppose BR(s) 5 Int L=”. (In
other words, L is an innermost component of BR(s).) Then the same
argument that was used in the proof of Lemma 3.2 shows that all con-
nected components of Int L clearly have the desired property, so we only
need to focus on Ext L.

Let us pick two sites x, y ¥ “ Ext L=L 5 “ Ext L and let LŒ=L 2 Int L.
Then LŒ is connected with a connected complement and since L has a
diameter less than L/2, we may as well think of LŒ as a subset of Zd. Now
Lemma 3.7 guarantees that “(LŒ)c=“ Ext L is f-connected and hence x
and y are connected by a f-connected path entirely contained in “ Ext L.
But the spin configuration must be constant on any box (z+[−R, R]d)
5 Zd with z ¥ “ Ext L and thus the spin is constant along the path. It
follows that sx=sy.

The outcome of the previous argument is that now we can ‘‘rewrite’’
the configuration on LŒ without changing the rest of BR(s). The resulting
configuration will have fewer connected components of diameter less than
L/2 and, proceeding by induction, the proof is reduced to the cases when
there are no such components at all. But then we are down to the case
when L simply equals BR(s). Using again the argument in the proof of
Lemma 3.2, the spin must be constant on each connected component C of
TL 0BR(s)°. L
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The previous lemma shows that each component of the graph GR(s)
induces a unique label on every connected component C of its complement.
Consequently, if two contours share such a component—which includes the
case when their supports are adjacent to each other—they must induce the
same label on it. A precise statement of this ‘‘matching’’ condition is as
follows. (Note, however, that not all collections of contours will have this
matching property.)

Definition 3.8. We say that the pair (Y, N)—where Y is a set of
contours and N is a contour network on TL—is a collection of matching
contours if the following is true:

(1) supp Y 5 supp YŒ=” for any two distinct Y, YŒ ¥Y and
supp Y 5 suppN=” for any Y ¥Y.

(2) If C is a connected component of TL 0[(suppN)° 2
1Y ¥Y (supp Y)°], then the restrictions of the spin configurations sY
(and sN ) to C are the same for all contours Y ¥Y (and contour net-
work N) with supp Y 5 C ]” (suppN 5 C ]”). In other words, the
contours/contour network intersecting C induce the same label on C.

Here we use the convention that there are altogether |S| distinct pairs
(Y, N) with both Y=” and N=”, each of which corresponds to one
m ¥S.

Definition 3.8 has an obvious analogue for sets Y of contours on Zd,
where we require that (1) supp Y 5 supp YŒ=” for any two distinct
Y, YŒ ¥Y and (2) all contours intersecting a connected component C of
Zd0[1Y ¥Y (supp Y)°] induce the same label on C.

It remains to check the intuitively obvious fact that spin configura-
tions and collections of matching contours are in one-to-one correspon-
dence:

Lemma 3.9. For each spin configuration s ¥STL, there exists a
unique collection (Y, N) of matching contours on TL and for any collec-
tion (Y, N) of matching contours on TL, there exists a unique spin con-
figuration s ¥STL such that the following is true:

(1) The supports of the contours in Y (of the contour network N)
are the vertex sets (the union of the vertex sets) of the connected compo-
nents of the graph GR(s) with diameter strictly less than (at least) L/2.

(2) The spin configuration corresponding to a collection (Y, N) of
matching contours arise by restricting sY for each Y ¥Y as well as sN to
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the support of the corresponding contour (contour network) and then
extending the resulting configuration by the common label of the adjacent
connected components.

Proof. Let s be a spin configuration and let L be a component of the
graph GR(s) with diameter less than L/2. Then Lemma 3.6 ensures that s
is constant on the boundary “C of each component C of Lc. Restricting s
to L and extending the resulting configuration in such a way that the new
configuration, s̃, restricted to a component component C of Lc, is equal
to the old configuration on “C, the pair (L, s̃) thus defines a contour.
Similarly, if L is the union of all components of the graph GR(s) with
diameter at least L/2 and C is a connected component of TL 0L°, then
s is, after removal of all contours, constant on C. The contours/contour
network (Y, N) then arise from s in the way described. The supports of
these objects are all disjoint, so the last property to check is that the labels
induced on the adjacent connected components indeed match. But this is a
direct consequence of the construction.

To prove the converse, let (Y, N) denote a set of matching contours
and let s be defined by the corresponding contour configuration on the
support of the contours (or contour network) and by the common value of
the spin in contour configurations for contours adjacent to a connected
component of TL 0[(suppN)° 2 1Y ¥Y (supp Y)°]. (If at least one of
Y, N is nonempty, then this value is uniquely specified because of the
matching condition; otherwise, it follows by our convention that empty
(Y, N) carries an extra label.)

It remains to show that Y are the contours and N is the contour
network of s. Let A be a component of the graph GR(s). We have to show
that it coincides with supp Y for some Y ¥Y or with a component of
suppN (viewed as a graph). We start with the observation that A …

suppN 2 (1Y ¥Y supp Y). Next we note that for each Y ¥Y, the graph
GR(sY) is connected. Since the restriction of sY to supp Y is equal to the
corresponding restriction of s, we conclude that supp Y 5 A ]” implies
supp Y … A, and similarly for the components of suppN. To complete the
proof, we therefore only have to exclude that supp Y … A for more than
one contour Y ¥Y, or that L … A for more than one component L of
suppN, and similarly for the combination of contours in Y and compo-
nents of suppN.

Let us assume that supp Y … A for more than one contour Y ¥Y.
Since A is a connected component of the graph GR(s), this implies that
there exists a box Bz=(z+[−R, R]d) 5 Zd and two contours Y1, Y2 ¥ Y
such that s is not constant on Bz, supp Y1 2 supp Y2 … A and Bz is inter-
secting both supp Y1 and supp Y2. But this is in contradiction with the fact
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that Y is a collection of matching contours (and a configuration on any
such box not contained in the support of one of the contours in Y or in a
component of suppN must be constant). In the same way one excludes the
case combining supp Y with a component of suppN or combining two
components of suppN. Having excluded everything else, we thus have
shown that A is either the support of one of the contours in Y, or one of
the components of suppN. L

3.2. Partition Functions and Peierls’ Condition

A crucial part of our forthcoming derivations concerns various
contour partition functions, so our next task will be to define these quan-
tities. We need some notation: Let (Y, N) be a collection of matching
contours on TL. A contour Y ¥Y is called an external contour in Y if
supp Y … Ext YŒ for all YŒ ¥Y different from Y, and we will call two con-
tours Y, YŒ ¥Y mutually external if supp Y … Ext YŒ and supp YŒ … Ext Y.
Completely analogous definitions apply to a set of matching contours Y on
Zd (recall that on Zd, we always set N=”). Note that, by Lemma 3.5,
two contours of a configuration s on TL are either mutually external or
one is contained in the interior of the other. Inspecting the proof of this
Lemma 3.5, the reader may easily verify that this remains true for configu-
rations on Zd, provided the set BR(s) is finite.

Given a contour Y=(supp Y, sY) or a contour network N=
(suppN, sN) let E(Y, z) and E(N, z) denote the corresponding excitation
energies E(sY, z) and E(sN, z) from (1.7). We then introduce exponential
weights rz(Y) and rz(N), which are related to the quantities E(Y, z) and
E(N, z) according to

rz(Y)=e−E(Y, z) and rz(N)=e−E(N, z). (3.1)

The next lemma states that the exponential weights hm(z), rz(Y) and
rz(N) are analytic functions of z.

Lemma 3.10. Suppose that Assumption C0 holds, let q ¥S, let Y
be a q-contour and let N be a contour network. Then hq(z), rz(Y), and
rz(N) are analytic functions of z in O2.

Proof. By Assumption C0, the functions z W jL(s, z)=exp{−FL(s, z)}
are holomorphic in O2. To prove the lemma, we will show that hq(z), rz(Y),
and rz(N) can be written as products over the exponential potentials
jL(s, z), with s=sq, s=sY, and s=sN, respectively.
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Let us start with hq(z). Showing that hq is the product of exponential
potentials jL(sq, z) is clearly equivalent to showing that eq can be rewritten
in the form

eq= C
L ¥Ve

FL(sq), (3.2)

where Ve is a collection of subsets L … TL. But this is obvious from the
definition (1.6) of eq: just choose Ve in such a way that it contains exactly
one representative from each equivalence class under translations.

Consider now a contour Y=(supp Y, sY) and the corresponding
excitation energy E(Y, z). We will want to show that E(Y, z) can be
written in the form

E(Y, z)= C
L ¥VY

FL(sY), (3.3)

where VY is again a collection of subsets L … TL. Let Lq=Ext Y 2 Int q Y,
and Lm=Intm Y for m ] q. Consider a point x ¥ Lm. Since x ¨ supp Y=
BR(sY), the configuration sY must be constant on any subset L … TL that
has diameter 2R+1 or less and contains the point x, implying that

C
L: x ¥ L

1
|L|
FL(sY)= C

L: x ¥ L

1
|L|
FL(sm)=em (3.4)

whenever x ¥ Lm. Using these facts, we now rewrite E(Y, z) as

E(Y, z)=bHL(sY)− C
x ¥ TL 0 supp Y

C
L : x ¥ L

1
|L|
FL(sY)

= C
L … TL

FL(sY)− C
m ¥S

|Lm | em

= C
L … supp Y

FL(sY)+ C
m ¥S

31 C
L … TL

L 5 Lm ]”

FL(sm)2−|Lm | em
4 . (3.5)

To complete the proof, we note that the sum over all L with L 5 Lm ]”

contains at least |Lm | translates of each L … TL contributing to the right
hand side of (3.2). As a consequence, the difference on the right hand side
of (3.5) can be written in the form (3.3), proving that E(Y, z) is of the form
(3.3). The proof that rz(N) is an analytic function of z is virtually identi-
cal. L
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Next we define partition functions in finite subsets of Zd. Fix an index
q ¥S. Let L … Zd be a finite set and letM(L, q) be the set of all collections
Y of matching contours in Zd with the following properties:

(1) For each Y ¥Y, we have supp Y 2 Int Y … L.

(2) The external contours in Y are q-contours.

Note that supp Y 2 Int Y … L is implied by the simpler condition that
supp Y … L if Zd0L is connected, while in the case where Zd0L is not
connected, the condition supp Y 2 Int Y … L is stronger, since it implies
that none of the contours Y ¥Y contain any hole of L in its interior. (Here
a hole is defined as a finite component of Zd0L.) In the sequel, we will
say that Y is a contour in L whenever Y obeys the condition supp Y 2
Int Y … L.

The contour partition function in L with boundary condition q is then
defined by

Zq(L, z)= C
Y ¥M(L, q)

5 D
m ¥S

hm(z) |Lm(Y)|6 D
Y ¥Y

rz(Y), (3.6)

where Lm(Y) denotes the union of all components of L01Y ¥Y supp Y
with label m, and |Lm(Y)| stands for the cardinality of Lm(Y).

If we add the condition that the contour network N is empty, the
definitions of the set M(L, q) and the partition function Zq(L, z) clearly
extends to any subset L … TL, because on TL every contour has a well
defined exterior and interior. However, our goal is to have a contour
representation for the full torus partition function. Let ML denote the set
of all collections (Y, N) of matching contours in TL which, according to
our convention, include an extra label m ¥S when both Y and N are
empty. If (Y, N) ¥ML is such a collection, let Lm(Y, N) denote the
union of the components of TL 0(suppN 2 1Y ¥Y supp Y) with label m.
Then we have:

Proposition 3.11 (Contour Representation). The partition func-
tion on the torus TL is given by

ZperL (z)= C
(Y, N) ¥ML

5 D
m ¥S

hm(z) |Lm(Y, N)|6 rz(N) D
Y ¥Y

rz(Y). (3.7)

In particular, we have

ZperL (z)= C
(”, N) ¥ML

rz(N) D
m ¥S

Zm(Lm(”, N), z). (3.8)
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Proof. By Lemma 3.9, the spin configurations s are in one-to-one
correspondence with the pairs (Y, N) ¥ML. Let (Y, N) be the pair cor-
responding to s. Rewriting (1.8) as

bHL(s)= C
x ¥ TL

C
L: L … TL
L ¦ x

1
|L|
FL(s), (3.9)

we can now split the first sum into several parts: one for each m ¥S
corresponding to x ¥ Lm(Y, N), one for each Y ¥Y corresponding to
x ¥ supp Y, and finally, one for the part of the sum corresponding to
x ¥ suppN. Invoking the definitions of the energies em(z), E(Y, z) and
E(N, z), this gives

bHL(s)= C
m ¥S

em(z) |Lm(Y, N)|+ C
Y ¥Y

E(Y, z)+E(N, z). (3.10)

Strictly speaking, the fact that the excitation energy factors (technically,
sums) over contours and contour networks requires a proof. Since this is
straightforward using induction as in the proof of Lemma 3.6, starting
again with the innermost contours, we leave the formal proof to the reader.
Using the definitions of hm(z), rz(Y), and rz(N) and noting that, by
Lemma 3.9, the sum over s can be rewritten as the sum over (Y, N) ¥ML,
formula (3.7) directly follows.

The second formula, (3.8), formally arises by a resummation of all
contours that can contribute together with a given contour network N. It
only remains to check that if Ym …Y is the set of Y ¥Y with supp Y … Lm

=Lm(”, N), then Ym can take any value in M(Lm, m). But this follows
directly from Definition 3.8 and the definition ofM(Lm, m). L

In order to be useful, the representations (3.7) and (3.8) require that
contours and contour networks are sufficiently suppressed with respect to
the maximal ground state weight h. This is ensured by Assumption C2,
which guarantees that |rz(Y)| [ h(z) |Y| e−y |Y| and |rz(N)| [ h(z) |N| e−y |N|,
where we used the symbols |Y| and |N| to denote the cardinality of supp Y
and suppN, respectively.

3.3. Cluster Expansion

The last ingredient that we will need is the cluster expansion, which will
serve as our principal tool for evaluating and estimating logarithms of
various partition functions. The cluster expansion is conveniently for-
mulated in the context of so-called abstract polymer models. (7, 10, 14, 19) Let K
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be a countable set—the set of all polymers—and let ¾ be the relation of
incompatibility which is a reflexive and symmetric binary relation on K. For
each A … K, let M(A) be the set of multi-indices X: K Q {0} 2N that are
finite, ;c ¥ K X(c) <., and that satisfy X(c)=0 whenever c ¨ A. Further,
let C(A) be the set of all multi-indices X ¥M(A) with values in {0, 1} that
satisfy X(c) X(cŒ)=0 whenever c ¾ cŒ and c ] cŒ.

Let z: K Q C be a polymer functional. For each finite subset A … K, let
us define the polymer partition functionZ(A) by the formula

Z(A)= C
X ¥ C(A)

D
c ¥ K

z(c)X(c). (3.11)

In the most recent formulation, (7, 14) the cluster expansion corresponds to
a multidimensional Taylor series for the quantity logZ(A), where the
complex variables are the z(c). Here clusters are simply multi-indices
X ¥M(K) for which any nontrivial decomposition of X leads to incom-
patible multi-indices. Explicitly, if X can be written as X1+X2 with
X1, X2 – 0, then there exist two (not necessary distinct) polymers c1, c2 ¥ K,
c1 ¾ c2, such that X1(c1) X2(c2) ] 0.

Given a finite sequence C=(c1,..., cn) of polymers in K, let n(C)=n
be the length of the sequence C, let G(C) be the set of all connected graphs
on {1,..., n} that have no edge between the vertices i and j if c i ’ cj, and let
XC be the multi-index for which XC(c) is equal to the number of times that
c appears in C. For a finite multi-index X, we then define

aT(X)= C
C: XC=X

1
n(C)!

C
g ¥ G(C)

(−1) |g|, (3.12)

with |g| denoting the number of edges in g, and

zT(X)=aT(X) D
c ¥ K

z(c)X(c). (3.13)

Note that G(C)=” if XC is not a cluster, implying, in particular, that
zT(X)=0 whenever X is not a cluster. We also use the notation X ¾ c

whenever X is a cluster such that X(cŒ) > 0 for at least one cŒ ¾ c.
The main result of ref. 14 (building upon ref. 7) is then as follows:

Theorem 3.12 (Cluster Expansion). Let a: K Q [0,.) be a func-
tion and let z0: K Q [0,.) be polymer weights satisfying the bound

C
cŒ ¥ K
cŒ ¾ c

z0(cŒ) ea(cŒ) [ a(c), c ¥ K. (3.14)
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Then Z(A) ] 0 for any finite set A … K and any collection of polymer
weights z: K Q C in the multidisc DA={(z(c)): |z(c)| [ z0(c), c ¥ A}. More-
over, if we define logZ(A) as the unique continuous branch of the
complex logarithm of Z(A) on DA normalized so that logZ(A)=0 when
z(c)=0 for all c ¥ A, then

logZ(A)= C
X ¥M(A)

zT(X) (3.15)

holds for each finite set A … K. Here the power series on the right hand side
converges absolutely on the multidisc DA. Furthermore, the bounds

C
X ¥M(K)
X(c) \ 1

|zT(X)| [ C
X ¥M(K)

X(c) |zT(X)| [ |z(c)| ea(c) (3.16)

and

C
X ¥M(K)

X ¾ c

|zT(X)| [ a(c) (3.17)

hold for each c ¥ K.

Proof. This is essentially the main result of ref. 14 stated under the
(stronger) condition (3.14), which is originally due to refs. 10 and 15. To
make the correspondence with ref. 14 explicit, let

m(c)=log(1+|z(c)| ea(c)) (3.18)

and note that m(c) [ |z(c)| ea(c) [ z0(c) ea(c). The condition (3.14) then
guarantees that we have ;cŒ ¾ c m(cŒ) [ a(c) and hence

|z(c)|=(em(c) −1) e−a(c) [ (em(c) −1) exp 3 − C
cŒ ¾ c

m(cŒ)4 . (3.19)

This implies that any collection of weights z: K Q C such that |z(c)| [ z0(c)
for all c ¥ K will fulfill the principal condition of the main theorem of
ref. 14. Hence, we can conclude that Z(A) ] 0 in DA and that (3.15) holds.
Moreover, as shown in ref. 14, both quantities on the left-hand side of
(3.16) are bounded by em(c) −1 which simply equals |z(c)| ea(c). The bound
(3.16) together with the condition (3.14) immediately give (3.17). L

To facilitate the future use of this result, we will extract the relevant
conclusions into two lemmas. Given a spin state q ¥S, let K q denote the
set of all q-contours in Zd. If Y, YŒ ¥ K q, let us call Y and YŒ incompatible if
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supp Y 5 supp YŒ ]”. If A is a finite set of q-contours, we will let Z(A)
be the polymer sum (3.11) defined using this incompatibility relation. Then
we have:

Lemma 3.13. There exists a constant c0=c0(d, |S|) ¥ (0,.) such
that, for all q ¥S and all contour functionals z: K q Q C satisfying the
condition

|z(Y)| [ z0(Y)=e−(c0+g) |Y| for all Y ¥ K q, (3.20)

for some g \ 0, the following holds for all k \ 1:

(1) Z(A) ] 0 for all finite A …Kq with logZ(A) given by (3.15), and

C
X ¥M(Kq)

V(X) ¦ 0, ||X|| \ k

|zT(X)| [ e−gk. (3.21)

Here V(X)=1Y: X(Y) > 0 V(Y) with V(Y)=supp Y 2 Int Y and ||X||=
;Y ¥ Kq

X(Y) |Y|.

(2) Furthermore, if the activities z(Y) are twice continuously differ-
entiable (but not necessarily analytic) functions of a complex parameter z
such that the bounds

|“wz(Y)| [ z0(Y) and |“w“wŒz(Y)| [ z0(Y) (3.22)

hold for any w, wŒ ¥ {z, z̄} and any Y ¥ K q, then

C
X ¥M(Kq)

V(X) ¦ 0, ||X|| \ k

|“wzT(X)| [ e−gk and C
X ¥M(Kq)

V(X) ¦ 0, ||X|| \ k

|“w“wŒzT(X)| [ e−gk,
(3.23)

for any w, wŒ ¥ {z, z̄}.

Using, for any finite L … Zd, the notation K q, L={Y ¥ K q : supp Y 2
Int Y … L} and “L for the set of sites in Zd0L that have a nearest neighbor
in L, we get the following lemma as an easy corollary:

Lemma 3.14. Suppose that the weights z satisfy the bound (3.20)
and are invariant under the translations of Zd. Then the polymer pressure
sq=limL ‘ Z

d |L|−1 logZ(K q, L) exists and is given by

sq= C
X ¥M(Kq) : V(X) ¦ 0

1
|V(X)|

zT(X). (3.24)
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Moreover, the bounds

|sq | [ e−g (3.25)

and

|logZ(K q, L)−sq |L|| [ e−g |“L| (3.26)

hold. Finally, if the conditions (3.22) on derivatives of the weights z(Y) are
also met, the polymer pressure sq is twice continuously differentiable in z
with the bounds

|“wsq | [ e−g and |“w“wŒsq | [ e−g, (3.27)

valid for any w, wŒ ¥ {z, z̄}.

Proof of Lemma 3.13. Let us consider a polymer model where
polymers are either a single site of Zd or a q-contour from K q. ( The reason
for including single sites as polymers will become apparent below.) Let the
compatibility between contours be defined by disjointness of their supports
while that between a contour Y and a site x by disjointness of {x} and
supp Y 2 Int Y. If we let z(c)=0 whenever c is just a single site, this
polymer model is indistinguishable from the one considered in the state-
ment of the lemma. Let us choose c0 so that

C
Y ¥ Kq : V(Y) ¦ 0

e (2−c0) |Y| [ 1. (3.28)

To see that this is possible with a constant c0 depending only on the
dimension and the cardinality of S, we note that each polymer is a con-
nected subset of Zd. As is well known, the number of such sets of size n
containing the origin grows only exponentially with n. Since there are only
finitely many spin states, this shows that it is possible to choose c0 as
claimed.

Defining a(c)=1 if c is a single site and a(Y)=|Y| if Y is a q-contour
in K q, the assumption (3.14) of Theorem 3.12 is then satisfied. (Note that
assumption (3.14) requires slightly less than (3.28), namely the analogue of
(3.28) with the exponent of (1−c0) |Y| instead of (2−c0) |Y|; the reason
why we chose c0 such that (3.28) holds will become clear momentarily.)
Theorem 3.12 guarantees that Z(A) ] 0 and (3.15) holds for the corre-
sponding cluster weights zT. Actually, assumption (3.14) is, for all g \ 0,
also satisfied when z(Y) is replaced by z(Y) eb(Y) with b(Y)=g |Y|, yielding

C
X ¥M(K)

X ¾ c

eb(X) |zT(X)| [ a(c) (3.29)
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with b(X)=g ||X|| instead of (3.17). Using (3.29) with c chosen to be the
polymer represented by the site at the origin and observing that the quan-
tity b(X) exceeds gk for any cluster contributing to the sum in (3.21), we
get the bound

egk C
X ¥M(Kq)

V(X) ¦ 0, ||X|| \ k

|zT(X)| [ C
X ¥M(Kq)
V(X) ¦ 0

|zT(X)| eb(X) [ 1, (3.30)

i.e., the bound (3.21).
In order to prove the bounds (3.23), we first notice that, in view of

(3.13) and (3.22) we have

|“wzT(X)| [ ||X|| |zT0 (X)| [ e ||X|| |zT0 (X)| (3.31)

and

|“w“wŒzT(X)| [ ||X||2 |zT0 (X)| [ e ||X|| |zT0 (X)|. (3.32)

Using (3.29) with b(Y)=(g+1) |Y| (which is also possible since we choose
c0 such that (3.28) holds as stated, instead of the weaker condition where
(2−c0) |Y| is replaced by (1−c0) |Y|) we get (3.23) in the same way as
(3.21). L

Proof of Lemma 3.14. The bound (3.21) for k=1 immediately
implies that the sum in (3.24) converges with |sq | [ e−g. Using (3.15) and
standard resummation techniques, we rewrite the left hand side of (3.26) as

|logZ(K q, L)−sq |L||=: C
X ¥M(Kq)
V(X) ¼ L

|V(X) 5 L|
|V(X)|

zT(X) : . (3.33)

Next we note that for any cluster X ¥M(K q), the set V(X) is a connected
subset of Zd, which follows immediately from the observations that
supp Y 2 Int Y is connected for all contours Y, and that incompatibility of
two contours Y, YŒ implies that supp Y 5 supp YŒ ]”. Since only clusters
with V(X) 5 L ]” and V(X) 5 Lc ]” contribute to the right hand side
of (3.33), we conclude that the right hand side of (3.33) can be bounded by
a sum over clusters X ¥ K q with V(X) 5 “L ]”. Using this fact and the
bound (3.21) with k=1, (3.26) is proved.

Similarly, using the bounds (3.23) in combination with explicit expres-
sion (3.24) in terms of absolutely converging cluster expansions, the claims
(3.27) immediately follow. L
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Remark 3.15. The proof of Lemma 3.13 holds without changes if
we replace the set of all q-contours in Zd by the set of all q-contours on the
torus TL. This is not true, however, for the proof of the bound (3.26) from
Lemma 3.14 since one also has to take into account the difference between
clusters wrapped around the torus and clusters in Zd. The corresponding
modifications will be discussed in Section 4.4.

4. PIROGOV–SINAI ANALYSIS

The main goal of this section is to develop the techniques needed to
control the torus partition function. Along the way we will establish some
basic properties of the metastable free energies which will be used to prove
the statements concerning the quantities zm. Most of this section concerns
the contour model on Zd. We will return to the torus in Sections 4.4 and 5.

All of the derivations in this section are based on assumptions that are
slightly more general than Assumption C. Specifically, we only make
statements concerning a contour model satisfying the following three con-
ditions (which depend on two parameters, y and M):

(1) The partition functions Zq(L, z) and ZperL (z) are expressed in
terms of the energy variables hm(z) and contour weights rz as stated in (3.6)
and (3.7), respectively.

(2) The weights rz of contours and contour networks are translation
invariant and are twice continuously differentiable functions on O2. They
obey the bounds

|“az“
ā

z̄rz(Y)| [ (M |Y|)a+ā e−y |Y|h(z) |Y| (4.1)

and

|“az“
ā

z̄rz(N)| [ (M |N|)a+ā e−y |N|h(z) |N| (4.2)

as long as a, ā \ 0 and a+ā [ 2.
(3) The energy variables hm are twice continuously differentiable

functions on O2 and obey the bounds

|“az“
ā

z̄hm(z)| [ (M)a+ā h(z) (4.3)

as long as a, ā \ 0 and a+ā [ 2. We will assume that h(z) is bounded uni-
formly from below throughout O2. However, we allow that some of the hm
vanish at some z ¥ O2.

In particular, throughout this section we will not require that any of the
quantities hm, rz(Y), or rz(N) is analytic in z.
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4.1. Truncated Contour Weights

The key idea of contour expansions is that, for phases that are ther-
modynamically stable, contours appear as heavily suppressed perturbations
of the corresponding ground states. At the points of the phase diagram
where all ground states lead to stable phases, cluster expansion should then
allow us to calculate all important physical quantities. However, even in
these special circumstances, the direct use of the cluster expansion on (3.6)
is impeded by the presence of the energy terms hm(z) |Lm(Y)| and, more
seriously, by the requirement that the contour labels match.

To solve these problems, we will express the partition function in a
form which does not involve any matching condition. First we will rewrite
the sum in (3.6) as a sum over mutually external contours Yext times a sum
over collections of contours which are contained in the interior of one of
the contours in Yext. For a fixed contour Y ¥Yext, the sum over all con-
tours inside Intm Y then contributes the factor Zm(Intm Y, z), while the
exterior of the contours in Yext contributes the factor hm(z) |Ext|, where
Ext=ExtL(Yext)=4Y ¥Y

ext (Ext Y 5 L). As a consequence, we can rewrite
the partition function (3.6) as

Zq(L, z)=C
Y
ext

hq(z) |Ext| D
Y ¥Y

ext

3rz(Y) D
m

Zm(Intm Y, z)4 , (4.4)

where the sum goes over all collections of compatible external q-contours
in L.

At this point, we use an idea which originally goes back to ref. 9. Let
us multiply each term in the above sum by 1 in the form

1= D
Y ¥Y

ext

D
m

Zq(Intm Y, z)
Zq(Intm Y, z)

. (4.5)

Associating the partition functions in the denominator with the corre-
sponding contour, we get

Zq(L, z)=C
Y
ext

hq(z) |Ext| D
Y ¥Y

ext

(hq(z) |Y| Kq(Y, z) Zq(Int Y, z)), (4.6)

where Kq(Y, z) is given by

Kq(Y, z)=rz(Y) hq(z)−|Y| D
m ¥S

Zm(Intm Y, z)
Zq(Intm Y, z)

. (4.7)
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Proceeding by induction, this leads to the representation

Zq(L, z)=hq(z) |L| C
Y ¥ C(L, q)

D
Y ¥Y

Kq(Y, z), (4.8)

where C(L, q) denotes the set of all collections of non-overlapping
q-contours in L. Clearly, the sum on the right hand side is exactly of the
form needed to apply cluster expansion, provided the contour weights
satisfy the necessary convergence assumptions.

Notwithstanding the appeal of the previous construction, a bit of
caution is necessary. Indeed, in order for the weights Kq(Y, z) to be well
defined, we are forced to assume—or prove by cluster expansion, provided
we somehow know that the weights Kq have the required decay—that
Zq(Intm Y, z) ] 0. In the ‘‘physical’’ cases when the contour weights are
real and positive (and the ground-state energies are real-valued), this con-
dition usually follows automatically. However, here we are considering
contour models with general complex weights and, in fact, our ultimate
goal is actually to look at situations where a partition function vanishes.

Matters get even more complicated whenever there is a ground state
which fails to yield a stable state (which is what happens at a generic point
of the phase diagram). Indeed, for such ground states, the occurrence of
a large contour provides a mechanism for flipping from an unstable to a
stable phase—which is the favored situation once the volume gain of free
energy exceeds the energy penalty at the boundary. Consequently, the rela-
tive weights of ( large) contours in unstable phases are generally large,
which precludes the use of the cluster expansion altogether. A classic solu-
tion to this difficulty is to modify the contour functionals for unstable
phases. (5, 6, 21) We will follow the strategy of ref. 6, where contour weights
are truncated with the aid of a smooth mollifier.

To introduce the truncated contours weights, let us consider a C2(R)-
function x W q(x), such that 0 [ q( · ) [ 1, q(x)=0 for x [ −2, and
q(x)=1 for x \ −1. Let c0 be the constant from Lemma 3.13. Using q as
a regularized truncation factor, we shall inductively define new contour
weights K2 −q( · , z) so that |K2 −q(Y, z)| [ e−(c0+y/2) |Y| for all q-contours Y. By
Lemma 3.13, the associated partition functions Z −q( · , z) defined by

Z −q(L, z)=hq(z) |L| C
Y ¥ C(L, q)

D
Y ¥Y

K2 −q(Y, z) (4.9)

can then be controlled by cluster expansion. (Of course, later we will show
that K2 −q( · , z)=Kq( · , z) and Z −q(L, z)=Zq(L, z) whenever the ground state
q gives rise to a stable phase.)
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Let hq(z) ] 0, let Y be a q-contour in L, and suppose that Z −m(LŒ, z)
has been defined by (4.9) for all m ¥S and all LŒ v L. Let us further
assume by induction that Z −q(LŒ, z) ] 0 for all m ¥S and all LŒ v L. We
then define a smoothed cutoff function fq(Y, z) by

fq(Y, z)= D
m ¥S

qq; m(Y, z), (4.10)

where

qq; m(Y, z)=q 1 y
4
+

1
|Y|

log : Z
−

q(Int Y, z) hq(z) |Y|

Z −m(Int Y, z) hm(z) |Y|
: 2 . (4.11)

Here qq; m(Y, z) is interpreted as 1 if hm(z) or Z −m(Int Y, z) is zero.
As a consequence of the above definitions and the fact that Intm Y v L

for all m ¥S, the expressions

K −

q(Y, z)=rz(Y) hq(z)−|Y| fq(Y, z) D
m ¥S

Zm(Intm Y, z)
Z −q(Intm Y, z)

(4.12)

and

K2 −q(Y, z)=˛K
−

q(Y, z), if |K −

q(Y, z)| [ e−(c0+y/2) |Y|,

0, otherwise,
(4.13)

are meaningful for all z with hq(z) ] 0. By Lemma 3.13 we now know that
Z −q(L, z) ] 0 and the inductive definition can proceed.

In the exceptional case hq(z)=0, we let K2 −q( · , z)=K −

q( · , z) — 0 and
Z −q( · , z) — 0. Note that this is consistent with fq(Y, z) — 0.

Remark 4.1. Theorem 4.3 stated and proved below will ensure that
|K −

q(Y, z)| < e−(c0+y/2) |Y| for all q-contours Y and all q ¥S, provided y \
4c0+16. Hence, as it turns out a posteriori, the second alternative in (4.13)
never occurs and, once we are done with the proof of Theorem 4.3, we can
safely replace K2 −q everywhere by K −

q. The additional truncation allows us to
define and use the relevant metastable free energies before stating and
proving the (rather involved) Theorem 4.3. An alternative strategy would
be to define scale dependent free energies as was done, e.g., in ref. 6.

4.2. Metastable Free Energies

Let us rewrite Z −q(L, z) as

Z −q(L, z)=hq(z) |L| Z −

q(L, z) (4.14)
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where

Z −

q(L, z)= C
Y ¥ C(L, q)

D
Y ¥Y

K2 −q(Y, z). (4.15)

We then define

zq(z)=hq(z) e sq(z), (4.16)

where

sq(z)= lim
|L|Q.,

|“L|
|L| Q 0

1
|L|
logZ −

q(L, z). (4.17)

By Lemma 3.14, the partition functions Z −

q(L, z) and the polymer pressure
sq(z) can be analyzed by a convergent cluster expansion, leading to the
following lemma.

Lemma 4.2. For each q ¥S and each z ¥ O2, the van Hove limit
(4.17) exists and obeys the bound

|sq(z)| [ e−y/2. (4.18)

If L is a finite subset of Zd and hq(z) ] 0, we further have that Z −q(L, z) ] 0
and

|log(zq(z)−|L| Z −q(L, z))| [ e−y/2 |“L|, (4.19)

while zq(z)=0 and Z −q(L, z)=0 if hq(z)=0.

Proof. Recalling the definition of compatibility between q-contours
from the paragraph before Lemma 3.13, C(L, q) is exactly the set of all
compatible collections of q-contours in L. Using the bound (4.13), the
statements of the lemma are now direct consequences of Lemma 3.14, the
definition (4.16), the representation (4.14) for Z −q(L, z) and the fact that we
set K2 −q(Y, z)=0 if hq(z)=0. L

The logarithm of zq(z)—or at least its real part—has a natural inter-
pretation as the metastable free energy of the ground state q. To state our
next theorem, we actually need to define these (and some other) quantities
explicitly: For each z ¥ O2 and each q ¥S with hq(z) ] 0, let

fq(z)=−log |zq(z)|,

f(z)=min
m ¥S

fm(z),

aq(z)=fq(z)−f(z).

(4.20)
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If hq(z)=0, we set fq(z)=. and aq=.. (Note that supz ¥ O2 f(z) <. by
(4.16), the bound (4.18) and our assumption that h(z)=max q |hq(z)| is
bounded away from zero.)

In accord with our previous definition, a phase q is stable at z if
aq(z)=0. We will also say that a q-contour Y is stable at z if K −

q(Y, z)=
Kq(Y, z). As we will see, stability of the phase q implies that all q-contours
are stable. Now we can formulate an analogue of Theorem 3.1 of ref. 5 and
Theorem 1.7 of ref. 21.

Theorem 4.3. Suppose that y \ 4c0+16 where c0 is the constant
from Lemma 3.13, and let Ẽ=e−y/2. Then the following holds for all z ¥ O2:

(i) For all q ¥S and all q-contours Y, we have |K −

q(Y, z)| <
e−(c0+y/2) |Y| and, in particular, K2 −q(Y, z)=K −

q(Y, z).

(ii) If Y is a q-contour with aq(z) diam Y [ y

4 , then K −

q(Y, z)=
Kq(Y, z).

(iii) If aq(z) diam L [ y

4 , then Zq(L, z)=Z −q(L, z) ] 0 and

|Zq(L, z)| \ e−fq(z) |L|− Ẽ |“L|. (4.21)

(iv) If m ¥S, then

|Zm(L, z)| [ e−f(z) |L|e2Ẽ |“L|. (4.22)

Before proving Theorem 4.3, we state and prove the following simple
lemma which will be used both in the proof of Theorem 4.3 and in the
proof of Proposition 4.6 in the next subsection.

Lemma 4.4. Let m, q ¥S, let z ¥ O2 and let Y be a q-contour.

(i) If fq(Y, z) > 0, then

aq(|Int Y|+|Y|) [ (y/4+2+4e−y/2) |Y|. (4.23)

(ii) If fq(Y, z) > 0 and qq; m(Y, z) < 1, then

am(|Int Y|+|Y|) [ (1+8e−y/2) |Y|. (4.24)

Proof of Lemma 4.4. By the definitions (4.10) and (4.11), the con-
dition fq(Y, z) > 0 implies that

max
n ¥S

log :Z
−

n(Int Y, z) hn(z) |Y|

Z −q(Int Y, z) hq(z) |Y|
: [ (2+y/4) |Y|. (4.25)
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Next we observe that fq(Y, z) > 0 implies hq(z) ] 0. Since the maximum in
(4.25) is clearly attained for some n with hn(z) ] 0, we may use the bound
(4.19) to estimate the partition functions on the left hand side of (4.25).
Combined with (4.16), (4.18), (4.20) and the estimate |“ Int Y| [ |Y|, this
immediately gives the bound (4.23).

Next we use that the condition qq; m(Y, z) < 1 implies that

log :Z
−

m(Int Y, z) hm(z) |Y|

Z −q(Int Y, z) hq(z) |Y|
: \ (1+y/4) |Y|. (4.26)

Since (4.26) is not consistent with hm(z)=0, we may again use (4.19),
(4.16), (4.18), and (4.20) to estimate the left hand side, leading to the bound

(fq −fm)(|Int Y|+|Y|) \ (y/4+1−4e−y/2) |Y|. (4.27)

Combining (4.27) with (4.23) and expressing am as aq −(fq −fm), one easily
obtains the bound (4.24). L

As in ref. 5, Theorem 4.3 is proved using induction on the diameter
of L and Y. The initial step for the induction, namely, (i) and (ii) for
diam Y=1—which is trivially valid since no such contours exist—and (iii),
(iv) for diam L=1, is established by an argument along the same lines as
that which drives the induction, so we just need to prove the induction step.
Let N \ 1 and suppose that the claims (i)–(iv) have been established (or
hold automatically) for all YŒ, LŒ with diam YŒ, diam LŒ < N. Throughout
the proof we will omit the argument z in fm(z) and am(z).

The proof of the induction step is given in four parts:

Proof of (i). Let Y be such that diam Y=N. First we will show that
the second alternative in (4.13) does not apply. By the bounds (4.1) and
(4.18), we have that

|rz(Y) hq(z)−|Y|| [ e−y |Y| 1 h(z)
|hq(z)|
2 |Y|

[ e−(y−2Ẽ) |Y|eaq |Y|, (4.28)

while the inductive assumption (iv), the bound (4.19) and the fact that
;m |Intm Y|=|Int Y| and ;m |“ Intm Y|=|“ Int Y| [ |Y|, imply that

: D
m ¥S

Zm(Intm Y, z)
Z −q(Intm Y, z)

: [ eaq |Int Y|e3Ẽ |Y|. (4.29)

Assuming without loss of generality that fq(Y, z) > 0 (otherwise there is
nothing to prove), we now combine the bounds (4.28) and (4.29) with
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(4.23) and the fact that Ẽ=e−y/2 [ 2/y [ 1/8, to conclude that |K −

q(Y, z)| [
e−( 3

4 y−
5
2−5Ẽ) |Y| < e−( 3

4 y−4) |Y|. By the assumption y \ 4c0+16, this is bounded
by e−(c0+y/2) |Y|, as desired. L

Proof of (ii). Let diam Y=N and suppose that Y is a q-contour
satisfying aq diam Y [ y/4. Using the bounds (4.18) and (4.19), the defini-
tions (4.16) and (4.20), and the fact that |“ Int Y| [ |Y| we can conclude
that

max
m ¥S

1
|Y|

log :Z
−

m(Int Y, z) hm(z) |Y|

Z −q(Int Y, z) hq(z) |Y|
: [ aq

|supp Y 2 Int Y|
|Y|

+4Ẽ [
y

4
+1.
(4.30)

In the last inequality, we used the bound |supp Y 2 Int Y| [ |Y| diam Y, the
assumption that aq diam Y [ y/4 and the fact that 4Ẽ [ 1. We also used
that aq <. implies hq ] 0, which justifies the use of the bound (4.19).
By the definitions (4.10) and (4.11), the bound (4.30) implies that
fq(Int Y, z)=1. On the other hand, Zq(Intm Y, z)=Z −q(Intm Y, z) for all
m ¥S by the inductive assumption (iii) and the fact that diam Intm Y
< diam Y=N. Combined with the inductive assumption (i), we infer that
K2 −q(Y, z)=K −

q(Y, z)=Kq(Y, z). L

Proof of (iii). Let L … Zd be such that diam L=N and aq diam L
[ y/4. By the fact that (ii) is known to hold for all contours Y with
diam Y [ N, we have that K −

q(Y, z)=Kq(Y, z) for all Y in L, implying that
Zq(L, z)=Z −q(L, z). Invoking (4.19) and (4.20), the bound (4.21) follows
directly. L

Proof of (iv). Let L be a subset of Zd with diam L=N. Following
refs. 5 and 21, we will apply the cluster expansion only to contours that are
sufficiently suppressed and handle the other contours by a crude upper
bound. Given a compatible collection of contours Y, recall that internal
contours are those contained in Int Y of some other Y ¥Y while the others
are external. Let us call an m-contour Y small if am diam Y [ y/4; other-
wise we will call it large. The reason for this distinction is that if Y is small
then it is automatically stable.

Bearing in mind the above definitions, let us partition any collection
of contours Y ¥M(L, m) into three sets Y int 2Yext

small 2Yext
large of internal,

small-external and large-external contours, respectively. Fixing Yext
large and

resumming the remaining two families of contours, the partition function
Zm(L, z) can be recast in the form

Zm(L, z)=C
Y2

Z smallm (Ext, z) D
Y ¥Y2

3rz(Y) D
n ¥S

Zn(Int n Y)4 . (4.31)
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Here the sum runs over all sets Y2 of mutually external large m-contours
in L, the symbol Ext=ExtL(Y2 ) denotes the set 4Y ¥Y2 (Ext Y 5 L) and
Z smallm (Ext, z) is the partition sum in Ext induced by Y2 . Explicitly,
Z smallm (L, z) is the quantity from (3.6) with the sum restricted to the collec-
tions Y ¥M(L, m) for which all external contours are small according to
the above definition.

In the special case where hm(z)=0, all contours are large by definition
(recall that am=. if hm vanishes) and the partition function Z smallm (L, z) is
defined to be zero unless L=”, in which case we set it to one. We will not
pay special attention to the case hm=0 in the sequel of this proof, but as
the reader may easily verify, all our estimates remain true in this case, and
can be formally derived by considering the limit am Q..

Using the inductive assumption (iv) to estimate the partition functions
Zn(Int n Y), the Peierls condition (4.1) to bound the activities rz(Y), and
the bound (4.18) to estimate h(z) by e−fe Ẽ, we get

D
Y ¥Y2

3rz(Y) D
n ¥S

Zn(Int n Y)4 [ D
Y ¥Y2

{e−y |Y|e−f(|Int Y|+|Y|)+3Ẽ |Y|}

=e−f |L0Ext| D
Y ¥Y2

e−(y−3Ẽ) |Y|. (4.32)

Next we will estimate the partition function Z smallm (Ext, z). Since all small
m-contours are stable by the inductive hypothesis, this partition function
can be analyzed by a convergent cluster expansion. Let us consider the
ratio of Z smallm (Ext, z) and Z −m(Ext, z). Expressing the logarithm of this
ratio as a sum over clusters we obtain a sum over clusters that contain at
least one contour of size |Y| \ diam Y > y/am \ 2/am. Using the bound
(3.21) with g=y/2 we conclude that

:Z smallm (Ext, z)
Z −m(Ext, z)

: [ e |Ext| e − y/am. (4.33)

Combined with Lemma 4.2 and the definitions (4.20), this gives

|Z smallm (Ext, z)| [ e−(fm −e −y/am) |Ext| e Ẽ |“L| D
Y ¥Y2

e Ẽ |Y|. (4.34)

We thus conclude that the left hand side of (4.31) is bounded by

|Zm(L, z)| [max
Y2

1e−(am/2) |Ext| D
Y ¥Y2

e−(y/4) |Y|2

×e−f |L|e Ẽ |“L| C
Y2

e−b |Ext| D
Y ¥Y2

e−(3y/4−4Ẽ) |Y|, (4.35)
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where b=am/2−e−y/am. Note that b \ e−y/am which is implied by the fact
that 4e−y/am [ 4am/y [ am.

For the purposes of this proof, it suffices to bound the first factor in
(4.35) by 1. In a later proof, however, we will use a more subtle bound. To
bound the second factor, we will invoke Zahradnı́k’s method (see ref. 21,
Main Lemma or ref. 5, Lemma 3.2): Consider the contour model with
weights K1 (Y)=e−(3y/4−4) |Y| if Y is a large m-contour and K1 (Y)=0 other-
wise. Let Z1(L) be the corresponding polymer partition function in L—see
(3.11)—and let j be the corresponding free energy. Clearly Z1(L) \ 1 so
that −j \ 0. Since 3y/4−4 \ c0+y/2, we can use Lemmas 3.13 and 3.14
to obtain further bounds. For the free energy, this gives 0 [ −j [
min{Ẽ, e−y/am} because the weights of contours smaller than 2/am identi-
cally vanish. Since b \ e−y/am, this allows us to bound the sum on the right
hand side of (4.35) by

C
Y2

ej |Ext| D
Y ¥Y2

e−(3y/4−4Ẽ) |Y| [C
Y2

ej |Ext| D
Y ¥Y2

{ej |Y|e−(3y/4−5Ẽ) |Y|}. (4.36)

Using Lemma 3.14 once more, we have that Z1(Int Y) ej |Int Y|e Ẽ |Y| \ 1.
Inserting into (4.36), we obtain

C
Y2

e−b |Ext| D
Y ¥Y2

e−(3y/4−4Ẽ) |Y|

[C
Y2

ej(|Ext|+;Y ¥Y2 (|Int Y|+|Y|)) D
Y ¥Y2

{Z1(Int Y) K1 (Y)}

=ej |L| C
Y2

D
Y ¥Y2

{Z1(Int Y) K1 (Y)}. (4.37)

Consider, on the other hand, the polymer partition function Z1(L) in the
representation (3.11). Resuming all contours but the external ones, we
obtain precisely the right hand side of (4.37), except for the factor ej |L|.
This shows that the right hands side of (4.37) is equal to Z1(L) ej |L|

which—again by Lemma 3.14—is bounded by e Ẽ |“L|. Putting this and (4.35)
together we obtain the proof of the claim (iv). L

4.3. Differentiability of Free Energies

Our next item of concern will be the existence of two continuous and
bounded derivatives of the metastable free energies. To this end, we first
prove the following proposition, which establishes a bound of the form
(4.22) for the derivatives of the partition functions Zm(L, z).
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Proposition 4.5. Let y and M be the constants from (4.1) and (4.3),
let Ẽ=e−y/2, and suppose that y \ 4c0+16 where c0 is the constant from
Lemma 3.13. Then

|“az“
ā

z̄Zm(L, z)| [ e−f(z) |L|(2M |L|)a+ā e2Ẽ |“L|, (4.38)

holds for all z ¥ O2, all m ¥S, and all a, ā \ 0 with a+ā [ 2.

Proof. Again, we proceed by induction on the diameter of L. We
start from the representation (4.4) which we rewrite as

Zm(L, z)=C
Y
ext

D
x ¥ Ext

hm(z) D
Y ¥Y

ext
Z(Y, z), (4.39)

where we abbreviated Z(Y, z)=rz(Y) <n Zn(Int n Y, z). Let 1 [ a <. be
fixed (later, we will use that actually, a [ 2) and let us consider the impact
of applying “az on Zm(L, z). Clearly, each of the derivatives acts either on
some of hm’s, or on some of the Z(Y, z)’s. Let kx be the number of times
the term hm(z) is differentiated ‘‘at x,’’ and let iY be the number of times
the factor Z(Y, z) is differentiated. Let k=(kx) and i=(iY) be the cor-
responding multiindices. The resummation of all contours Y for which
iY=0 and kx=0 for all x ¥ supp Y 2 Int Y then contributes a factor
Zm(ExtL(Yb ext)0LŒ, z), where we used Yb ext to denote the set of all those
Y ¥Yext for which iY > 0, ExtL(Yb ext)=L01Y ¥Yb ext (supp Y 2 Int Y), and
LŒ={x: kx > 0}. (Remember the requirement that no contour in
ExtL(Yb ext)0LŒ surrounds any of the ‘‘holes.’’) Using this notation, the
result of differentiating can be concisely written as

“
a

zZm(L, z)=C
Yb ext

C
LŒ … ExtL(Yb

ext)

Zm(ExtL(Yb ext)0LŒ, z)

× C
k, i

k+i=a

a!
k! i!

D
x ¥ LŒ

“
kx
z hm(z) D

Y ¥Yb ext
“

iY
z Z(Y, z). (4.40)

Here the first sum goes over all collections (including the empty one) Yb ext

of mutually external contours in L and the third sum goes over all pairs of
multiindices (k, i), kx=1, 2,..., x ¥ LŒ, iY=1, 2,..., Y ¥Yb ext. ( The terms
with |LŒ|+|Yb ext| > a vanish.) We write k+i=a to abbreviate ;x kx+
;Y iY=a and use the symbols k! and i! to denote the multi-index factorials
<x kx! and<Y iY!, respectively.

We now use (4.3) and (4.18) to bound |“kx
z hm(z)| by (M)kx e Ẽe−f(z).

Employing (4.1) and (4.18) to bound the derivatives of rz(Y), and the
inductive hypothesis to bound the derivatives of Zm(Intm Y, z), we estimate
|“ iYz Z(Y, z)| by [2M |V(Y)|] iY e−(y−3Ẽ) |Y|e−f(z) |V(Y)| (recall that V(Y) was
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defined as supp Y 2 Int Y). Finally, we may use the bound (4.22) to esti-
mate

|Zm(ExtL(Yb ext)0LŒ, z)| [ e2Ẽ |“(ExtL(Yb
ext)0LŒ)e−f(z) |ExtL(Yb

ext)0LŒ|. (4.41)

Combining these estimates and invoking the inequality

|“(ExtL(Yb ext)0LŒ)| [ |“L|+|LŒ|+ C
Y ¥Yb ext

|Y|, (4.42)

we get

|“azZm(L, z)| [ e2Ẽ |“L|e−f(z) |L| C
Yb ext

C
LŒ … ExtL(Yb

ext)

C
k, i

k+i=a

a!
k! i!

× D
x ¥ LŒ

(Me3Ẽ)kx D
Y ¥Yb ext

(2M |V(Y)|) iY e−(y−5Ẽ) |Y|. (4.43)

Let us now consider the case a=1 and a=2. For a=1, the sum on the
right hand side of (4.43) can be rewritten as

C
x ¥ L

1Me3Ẽ+ C
Y: x ¥ V(Y) … L

2Me−(y−5Ẽ) |Y|2 , (4.44)

while for a=2, it becomes

C
x, y ¥ L

3(Me3Ẽ)2+2Me3Ẽ2M C
Y: x ¥ L0V(Y)
y ¥ V(Y) … L

e−(y−5Ẽ) |Y|+(2M)2 C
Yb ext

D
Y ¥Yb ext

e−(y−5Ẽ) |Y|4 ,
(4.45)

where the last sum goes over sets of mutually external contours Yb ext in L
such that {x, y} …1Y ¥Yb ext V(Y) and {x, y} 5 V(Y) ]” for each Y ¥Yb ext.
Note that the last condition can only be satisfied if Yb ext contains either one
or two contours. Introducing the shorthand

S= C
Y: 0 ¥ V(Y) … Z

d
e−(y−5Ẽ) |Y| (4.46)

we bound the expression (4.44) by (e3Ẽ+2S) M |L|, and the expression
(4.45) by (e6Ẽ+4e3ẼS+4(S+S2)) M2 |L|2. Recalling that c0 was defined in
such a way that the bound (3.28) holds, we may now use the fact that
y−5Ẽ−c0 \

1
2 y to bound S by e−2Ẽ. Since Ẽ [ 1/8, this implies that the

above two terms can be estimated by (e3/8+1
4 e−2) M |L| [ 2M |L| and

(e6/8+1
2 e3/8−2+1

2 (e−2+1
8 e−4)) M2 |L|2 [ 4M2 |L|2, as desired.
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This completes the proof for the derivatives with respect to z. The
proof for the derivatives with respect to z̄ and the mixed derivatives is
completely analogous and is left to the reader. L

Next we will establish a bound on the first two derivatives of the
contour weights K −

q. Before formulating the next proposition, we recall the
definitions of the polymer partition function Z −

q(L, z) and the polymer
pressure sq in (4.17) and (4.15) .

Proposition 4.6. Let y and M be the constants from (4.1) and (4.3),
let c0 be the constant from Lemma 3.13, and let Ẽ=e−y/2. Then there exists
a finite constant y1 \ 4c0+16 depending only on M, d, and |S| such that if
y \ y1, the contour weights K −

q(Y, · ) are twice continuously differentiable
in O2. Furthermore, the bounds

|“az“
ā

z̄K
−

q(Y, z)| [ e−(c0+y/2) |Y| (4.47)

and

|“az“
ā

z̄Z
−

q(L, z)| [ |L|a+ā e sq(z) |L|+Ẽ |“L| (4.48)

hold for all q ¥S, all z ¥ O2, all q-contours Y, all finite L … Zd and all
a, ā \ 0 with a+ā [ 2.

Proposition 4.6 immediately implies that the polymer pressures sq are
twice continuously differentiable and obey the bounds of Lemma 3.14. For
future reference, we state this in the following corollary.

Corollary 4.7. Let y1 be as in Proposition 4.6. If y \ y1 and q ¥S,
then sq is a twice continuously differentiable function in O2 and obeys the
bounds

|“wsq | [ e−y/2 and |“w“wŒsq | [ e−y/2, (4.49)

valid for any w, wŒ ¥ {z, z̄} and any z ¥ O2.

Proof of Proposition 4.6. Let y \ y1 \ 4c0+16. Then Theorem 4.3
is at our disposal. It will be convenient to cover the set O2 by the open sets

O2 (q)
1 ={z ¥ O2 : |hq(z)| < e−(y/4+2+6Ẽ)h(z)} (4.50)

and

O2 (q)
2 ={z ¥ O2 : |hq(z)| > e−(y/4+2+8Ẽ)h(z)}. (4.51)

142 Biskup et al.



We first note that K −

q(Y, z)=0 if z ¥ O2 (q)
1 . Indeed, assuming K −

q(Y, z) ] 0
we necessarily have fq(Y, z) > 0, which, by (4.23), implies that aq [

y/4+2+4Ẽ and thus log h(z)− log |hq(z)| [ y/4+2+6Ẽ, which is incom-
patible with z ¥ O2 (q)

1 . Hence, the claims trivially hold in O2 (q)
1 and it remains

to prove that K −

q(Y, · ) is twice continuously differentiable in O (q)
2 , and that

(4.47) and (4.48) hold for all z ¥ O2 (q)
2 . As in the proof of Theorem 4.3 we

will proceed by induction on the diameter of Y and L. Let N \ 1 and
suppose that K −

q(Y, · ) ¥ C2(O2 (q)
2 ) and obeys the bounds (4.47) for all q ¥S

and all q-contours Y with diam Y < N, and that (4.48) holds for all q ¥S
and all L … Zd with diam L < N−1.

We start by proving that K −

q(Y, · ) ¥ C2(O2 (q)
2 ) whenever Y is a

q-contour Y of diameter N. To this end, we first observe that in O2 (q)
2 , we

have that hq(z) ] 0 and hence also Z −q(Int Y, z) ] 0. Using the inductive
assumption, this implies that the quotient

Qm, Y(z)=
Z −m(Int Y, z) hm(z) |Y|

Z −q(Int Y, z) hq(z) |Y| (4.52)

is twice continuously differentiable in O2 (q)
2 , which in turn implies that

qq; m(Y, z) is twice continuously differentiable. Combined with the corre-
sponding continuous differentiability of rz(Y), hq(z), Zm(Intm Y, z), and
Z −q(Intm Y, z), this proves the existence of two continuous derivatives of
z W K −

q(Y, z) with respect to both z and z̄.
Next we prove the bound (4.48) for diam L=N−1. As we will see,

these bounds follow immediately from the inductive assumptions (4.47) and
Lemma 3.14. Indeed, let zq(Y)=K −

q(Y, z) if diam Y [ N−1, and zq(Y)=0
if diam Y > N−1. The inductive assumptions (4.47) then guarantee the
conditions (3.22) of Lemma 3.14. Combining the representation (3.15) for
logZ −

q(L, z) with the estimate (3.23) from Lemma 3.14 we thus conclude
that

|“az“
ā

z̄ logZ
−

q(L, z)| [ |L| Ẽ, (4.53)

while (3.26) gives the bound

|Z −

q(L, z)| [ e sq |L|+Ẽ |“L|. (4.54)

Combining these bounds with the estimates Ẽ |L| [ |L| and Ẽ2 |L|2+Ẽ |L|
[ |L|2, we obtain the desired bounds (4.48).

Before turning to the proof of (4.47) we will show that for z ¥ O2 (q)
2 , the

bound (4.48) implies

|“az“
ā

z̄Z
−

q(L, z)| [ (M1ey/4+3 |L|)a+ā e−fq(z) |L|+Ẽ |“L| (4.55)
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with M1=1+M. Indeed, invoking the assumption (4.3), the definition
of O2 (q)

2 , and the fact that Ẽ [ 1/8, we may estimate the first and second
derivative of hq(z) |L| by

|“az“
ā

z̄hq(z) |L|| [ 1M |L|
h(z)

|hq(z)|
2a+ā |hq(z)| |L|

[ (M |L| ey/4+3)a+ā |hq(z)| |L|. (4.56)

Combined with (4.14) and (4.48) this gives (4.55).
Let Y be a q-contour with diam Y=N, and let us consider the deriva-

tives with respect to z; the other derivatives are handled analogously. By
the assumption (4.1) and the bound (4.18), we have

|“azrz(Y)| [ |Y|a Mae−(y−2Ẽ) |Y|eaq |Y| |hq(z)| |Y|, (4.57)

while (4.3) and the assumption that z ¥ O2 (q)
2 (cf. (4.56)) yields

|“azhq(z)−|Y|| [ (|Y|+1)a (Mey/4+3)a |hq(z)|−|Y|. (4.58)

Further, combining the bound (4.55) with Theorem 4.3 and Proposition 4.5
we have

:“az D
m ¥S

Zm(Intm Y, z)
Z −q(Intm Y, z)

: [ |Int Y|a (2M+2M1e2Ẽ |Y|e3+y/4)a e3Ẽ |Y|eaq |Int Y|.
(4.59)

Finally, let us consider one of the factors qq; m(Y, z). To bound its deriva-
tive, we may assume that z is an accumulation point of zŒ with
qq; m(Y, zŒ) < 1 (otherwise its derivative is zero), so by Lemma 4.4(ii) we
have that am [ 1+8Ẽ and thus log h(z)− log |hm(z)| [ 1+10Ẽ < y/4+
2+8Ẽ, implying that z ¥ O2 (m)

2 . We may therefore use the bounds (4.56)
and (4.55) to estimate the derivatives of qq; m(Y, z), yielding the bound

|“azqq; m(Y, z)| [ C(|Int Y|+|Y|)a (4M1e3+y/4e2Ẽ |Y|)a (4.60)

where C is a constant bounding both the first and the second derivative of
the mollifier function q. Combining all these estimates, we obtain a bound
of the form

|“azK
−

q(Y, z)| [ C̃(|Int Y|+|Y|)a eay/4e−(y−c̃Ẽ) |Y|eaq(|Int Y|+|Y|) (4.61)

with a constant C̃ that depends on M and the number of spin states |S|,
and a constant c̃ that depends only on |S|. Using the bound (4.23) and the
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fact that eay/4 [ e (y/8) |Y| (note that |Y| \ (2R+1)d > 4 by our definition of
contours), we conclude that

|“azK
−

q(Y, z)| [ C̃(|Int Y|+|Y|)a e−(5y/8−3− c̃Ẽ) |Y|. (4.62)

Increasing y1 if necessary to absorb all of the prefactors, the bound (4.47)
follows. L

We close the subsection with a lemma concerning the Lipschitz conti-
nuity of real-valued functions z W f(z) and z W e−aq(z) on O2:

Lemma 4.8. Let y1 be as in Proposition 4.6 and let M2 1=4M+1. If
y \ y1, q ¥S, and if z, z0 ¥ O2 are such that [z0, z]={sz+(1−s) z0 :
0 [ s [ 1} … O2, then

|f(z0)−f(z)| [ M2 1 |z−z0 | (4.63)

and

|e−aq(z) −e−aq(z0)| [ 2M2 1 |z−z0 | eM2 1 |z−z0|. (4.64)

Proof. Let zq(z) be the quantity defined in (4.16), and let Ẽ=e−y/2.
Combining the assumption (4.3) with the bounds (4.49) and (4.18), we get
the estimate

|“wzq(z)| [ (Me2Ẽ+Ẽ) e−f(z), w, wŒ ¥ {z, z̄}. (4.65)

With the help of the bound Me2Ẽ+Ẽ [ 2M+1/2=M2 1/2, we conclude that

|e−fq(z1) −e−fq(z2)| [ M2 1 F
[z1, z2]

e−f(zŒ) |dzŒ|, z1, z2 ¥ [z0, z], (4.66)

where |dzŒ| denotes the Lebesgue measure on the interval [z0, z]. Using that
f=max q fq, this implies

|e−f(z1) −e−f(z2)| [ M2 1 F
[z1, z2]

e−f(zŒ) |dzŒ|, z1, z2 ¥ [z0, z]. (4.67)

Now if (4.63) is violated, i.e., when |f(z)−f(z0)| \ (M2 1+E) |z−z0 |, then
the same is true either about the first or the second half of the segment
[z0, z] . This shows that there is a sequence of intervals [z1, n, z2, n] of length
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2−n |z0 −z| where |f(z1, n)−f(z2, n)| \ (M2 1+E) |z1, n −z2, n |. But that would
be in contradiction with (4.67) which implies that

lim
n Q.

|f(z1, n)−f(z2, n)|
|z1, n −z2, n |

= lim
nQ.

|e−f(z1, n) −e−f(z2, n)|
>[z1, n, z2, n] e−f(zŒ) |dzŒ|

[ M2 1, (4.68)

where we use the mean-value Theorem and a compactness argument to
infer the first equality. Hence, (4.63) must be true after all.

To prove (4.64), we combine the triangle inequality and the bound
fq(z0) \ f(z0) with (4.66) and (4.67) to conclude that

|e−aq(z) −e−aq(z0)|=|ef(z)e−fq(z) −ef(z0)e−fq(z0)|

[ ef(z) |e−fq(z) −e−fq(z0)|+
e−fq(z0)

e−f(z)e−f(z0)
|e−f(z0) −e−f(z)|

[ 2M2 1 F
z

z0
ef(z)−f(zŒ) |dzŒ|. (4.69)

Bounding f(z)−f(zŒ) by M2 1 |z−z0 |, we obtain the bound (4.64). L

4.4. Torus Partition Functions

In this subsection we consider the partition functions Zq(L, z), defined
for L … TL in (3.6). Since all contours contributing to Zq(L, z) have diam-
eter strictly less than L/2, the partition function Zq(L, z) can be repre-
sented in the form (4.8), with Kq(Y, z) defined by embedding the contour Y
into Zd. Let Z −q(L, z) be the corresponding truncated partition function,
defined with weights K −

q(Y, z) given by (4.12). Notice, however, that even
though every contour Y … L can be individually embedded into Zd, the
relation of incompatibility is formulated on torus. The polymer partition
function Z −

q(L, z) and Z −q(L, z) can then again be analyzed by a con-
vergent cluster expansion, bearing in mind, however, the torus incompati-
bility relation. The torus analogue of Lemma 4.2 is then as follows:

Lemma 4.9. Assume that y \ y1, where y1 is the constant from
Proposition 4.6 and let q ¥S and z ¥ O2 be such that hq(z) ] 0. Then

|“aw log(zq(z)−|L| Z −q(L, z))| [ e−y/2 |“L|+2 |L| e−yL/4 (4.70)

for any L … TL, any z ¥ O2, a=0, 1, and w ¥ {z, z̄}.

Proof. Let us write Z −q(L, z) in the form (4.14). Taking into account
the torus compatibility relation when comparing the cluster expansion for
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logZ −

q(L, z) with the corresponding terms contributing to sq |L|, we see
that the difference stems not only from clusters passing through the
boundary “L, but also from the clusters that are wrapped around the torus
in the former as well as the clusters that cannot be placed on the torus in
the latter. For such clusters, however, we necessarily have ;Y X(Y) |Y|
\ L/2. Since the functional z(Y)=K −

q(Y, z) satisfies the bound (3.20) with
g=y/2, we may use the bound (3.21) to estimate the contribution of these
clusters. This yields

|logZ −

q(L, z)−sq |L|| [ e−y/2 |“L|+2 |L| e−yL/4, (4.71)

which is (4.70) for a=0. To handle the case a=1, we just need to recall
that, by Proposition 4.6, the functional z(Y)=K −

q(Y, z) satisfies the bounds
(3.22) with g=y/2. Then the desired estimate for a=1 follows with help of
(3.23) by a straightforward generalization of the above proof of (4.71). L

Next we provide the corresponding extension of Theorem 4.3 to the
torus:

Theorem 4.10. Let y \ 4c0+16 where c0 is the constant from
Lemma 3.13, and let us abbreviate Ẽ=e−y/2. For all z ¥ O2, the following
holds for all subsets L of the torus TL:

(i) If aq(z) diam L [ y

4 , then Zq(L, z)=Z −q(L, z) ] 0 and

|Zq(L, z)| \ e−fq(z) |L|e−Ẽ |“L|−2 |L| e − yL/4
. (4.72)

(ii) If m ¥S, then

|Zm(L, z)| [ e−f(z) |L|+2Ẽ |“L|+4 |L| e − yL/4
. (4.73)

(iii) If m ¥S, then

|Zm(TL, z)| [ e−f(z) Ld
max{e−am(z) Ld/2, e−yLd−1/4} e4Lde − yL/4

. (4.74)

Remark 4.11. The bounds (4.72) and (4.73) are obvious generaliza-
tions of the corresponding bounds in Theorem 4.3 to the torus. But unlike
in Proposition 4.6, we will not need to prove the bounds for the derivatives
with respect to z. When such bounds will be needed in the next section, we
will invoke analyticity in z and estimate the derivatives using Cauchy’s
Theorem.
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Proof of (i). Since all contours can by definition be embedded into Zd,
Theorem 4.3(ii) guarantees that K −

q(Y, z)=Kq(Y, z) for all q-contours in L
and hence Zq(L, z)=Z −q(L, z). Then (4.72) follows by Lemma 4.9 and the
definition of fq. L

Proof of (ii). We will only indicate the changes relative to the proof
of part (iv) of Theorem 4.3. First, since all contours can be embedded
into Zd, we have that a corresponding bound—namely, (4.22)—holds for
the interiors of all contours in L. This means that all of the derivation
(4.31)–(4.35) carries over, with the exception of the factor e Ẽ |“L| in (4.34)
and (4.35) which by Lemma 4.9 should now be replaced by e Ẽ |“L|+2 |L| e − yL/4

.
In order to estimate the last sum in (4.35), we will again invoke the trick
described in (4.36) and (4.37). This brings in yet another factor
e Ẽ |“L|+2 |L| e − yL/4

. From here (4.73) follows. L

Proof of (iii). The estimate is analogous to that in (ii); the only dif-
ference is that now we have to make use of the extra decay from the
maximum in (4.35). (Note that for L=TL we have |“L|=0 and |L|=Ld.)
Following ref. 5, this is done as follows: If Y is a contour, a standard iso-
perimetric inequality yields

|Y| \
1

2d
|“(supp Y 2 Int Y)| \ |supp Y 2 Int Y|

d−1
d . (4.75)

Hence, if Y2 is a collection of external contours in TL and Ext is the corre-
sponding exterior set, we have

C
Y ¥Y2

|Y| \ C
Y ¥Y2

|supp Y 2 Int Y|
d−1
d

\ 1 C
Y ¥Y2

|supp Y 2 Int Y|2
d−1
d

=(Ld −|Ext|)
d−1
d . (4.76)

Writing |Ext|=(1−x) Ld where x ¥ [0, 1], the maximum in (4.35) is
bounded by

sup
x ¥ [0, 1]

exp 3 −am

2
Ld(1−x)−

y

4
Ld−1x

d−1
d 4 . (4.77)

The function in the exponent is convex and the supremum is thus clearly
dominated by the bigger of the values at x=0 and x=1. This gives the
maximum in (4.74). L
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Apart from the partition functions Zm(TL, z), we will also need to deal
with the situations where there is a non-trivial contour network. To this
end, we need a suitable estimate on the difference

ZbigL (z)=ZperL (z)− C
m ¥S

Zm(TL, z). (4.78)

This is the content of the last lemma of this section.

Lemma 4.12. There exists a constant c̃0 depending only on d and
|S| such that for y \ 4c̃0+16 and all z ¥ O2, we have

|ZbigL (z)| [ Lde−yL/4e5Lde −yL/4
z(z)Ld

. (4.79)

Proof. Let c0 be the constant from Lemma 3.13, and let c̃0=
c̃0(d, |S|) \ c0 be such that

C
L … TL

(|S| e−c0) |L| [ Ld, (4.80)

where the sum goes over all connected subsets L of the torus TL ( the exis-
tence of such a constant follows immediately from the fact that the number
of connected subsets L … Zd that contain a given point x and have size k is
bounded by a d-dependent constant raised to the power k).

The proof of the lemma is now a straightforward corollary of
Theorem 4.10. Indeed, invoking the representation (3.8) we have

ZbigL (z)= C
(”, N) ¥ML

N ]”

rz(N) D
m ¥S

Zm(Lm(”, N), z), (4.81)

where Lm(”, N) is defined before Proposition 3.11. Using (4.2) and (4.73)
in conjunction with the bounds h(z) [ z(z) e2Ẽ and ;m ¥S |“Lm(”, N)|
[ |N|, we get

|ZbigL (z)| [ z(z)Ld
e4Lde −yL/4

C
(”, N) ¥ML

N ]”

e−(y−4Ẽ) |N|. (4.82)

Taking into account that each connected component of suppN has size at
least L/2, the last sum can be bounded by

C
(”, N) ¥ML

N ]”

e−(y−4Ẽ) |N| [ C
.

n=1

1
n!

Sn [ SeS (4.83)
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where

S= C
L … TL
|L| \ L/2

(|S| e−(y−4Ẽ)) |L| (4.84)

is a sum over connected sets L … TL of size at least L/2. Extracting a factor
e−yL/4 from the right hand side of (4.84), observing that y/2−4Ẽ \ c̃0, and
recalling that c̃0 was defined in such a way that (4.80) holds, we get the
estimate S [ Lde−yL/4. Combined with (4.82) and (4.83) this gives the
desired bound (4.79). L

5. PROOFS OF MAIN RESULTS

We are finally in a position to prove our main results. Unlike in Sec-
tion 4, all of the derivations will assume the validity of Assumption C.
Note that the assumptions (4.1)–(4.3) follow from Assumptions C0–C2, so
all results from Section 4 are at our disposal. Note also that rz(Y), rz(N),
and hm(z) are analytic functions of z by Lemma 3.10, implying that the
partition functions Zm(L, · ) and ZperL are analytic functions of z.

We will prove Theorems A and B for

y0=max{y1, 4c̃0+16, 2 log(2/a)} (5.1)

where y1 is the constant from Proposition 4.6, c̃0 is the constant from
Lemma 4.12 and a is the constant from Assumption C. Recall that y1 \
4c0+16, so for y \ y0 we can use all results of Section 4.

First, we will attend to the proof of Theorem A:

Proof of Theorem A. Most of the required properties have already
been established. Indeed, let zq be as defined in (4.16). Then (2.9) is exactly
(4.18) which proves part (1) of the Theorem A.

In order to prove that “z̄zq(z)=0 whenever z ¥Sq, we recall that
zq(z)=hq(z) e sq(z) where hq(z) is holomorphic in O2 and sq(z) is given in
terms of its Taylor expansion in the contour activities K −

q(Y, z). Now, if
aq(z)=0—which is implied by z ¥Sq—then K −

q(Y, z)=Kq(Y, z) for any
q-contour Y by Theorem 4.3. But “z̄Kq(Y, z)=0 by the fact that rz(Y),
Zq(Intm Y, z), and Zm(Intm Y, z) are holomorphic and Zq(Intm Y, z) ] 0.
Since sq is given in terms of an absolutely converging power series in the
Kq’s, we thus also have that “z̄e sq(z)=0. Hence “z̄zq(z)=0 for all z ¥Sq.

To prove part (3), let z ¥Sm 5Sn for some distinct indices m, n ¥R.
Using Lemma 4.2 we then have

hm(z) \ h(z) e−2e − y/2
(5.2)
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and similarly for n. Since a \ 2e−y0/2 \ 2e−y/2, we thus have z ¥La(m)
5La(n). Using the first bound in (4.49), we further have

:“zzm(z)
zm(z)

−
“zzn(z)
zn(z)
: \ |“zem(z)−“zen(z)|−2e−y/2. (5.3)

Applying Assumption C3, the right hand side is not less than a−2e−y/2.
Part (4) is proved analogously; we leave the details to the reader. L

Before proving Theorem B, we prove the following lemma.

Lemma 5.1. Let E > 0, let y1 be the constant from Proposition 4.6,
and let

s (L)
q (z)=

1
|L|
logZ −

q(TL, z) (5.4)

and

z (L)
q (z)=hq(z) e s(L)

q (z). (5.5)

Then there exists a constant M0 depending only on E and M such that

|“azz
(L)
q (z)| [ (a!)2 (M0)a |z (L)

q (z)| (5.6)

holds for all q ¥S, all a \ 1, all y \ y1, all L \ y/2, and all z ¥ O2 with
aq(z) [ y/(4L) and dist(z, O2 c) \ E.

Proof. We will prove the lemma withe the help of Cauchy’s theorem.
Starting with the derivatives of hq, let E0=min{E, 1/(4M2 1)} where M2 1=
1+4M is the constant from Lemma 4.8, and let zŒ be a point in the disc
DE0 (z) of radius E0 around z. Using the bounds (4.18) and (4.63), we now
bound

|hq(zŒ)| [ e Ẽ−f(zŒ) [ e Ẽ+M2 1E0e−f(z) [ e Ẽ+M2 1E0+aq(z)e−fq(z) [ |hq(z)| e2Ẽ+M2 1E0+aq(z).
(5.7)

With the help of Cauchy’s theorem and the estimates Ẽ [ 1/8, M2 1E [ 1/4,
and aq(z) [ 1/2, this implies

|“azhq(z)|
|hq(z)|

[ a! E−a0 e1/4+1/4+1/2 [ a! (2E−1
0 )a. (5.8)
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In order to bound the derivatives of s (L)
q , let us consider a multiindex X

contributing to the cluster expansion of s(L)
q , and let k=maxY: X(Y) > 0 diam Y.

Defining

Ek=min{E, (20eM2 1k)−1}, (5.9)

where M2 1=1+4M is the constant from Lemma 4.8, we will show that the
weight K −

q(Y, · ) of any contour Y with X(Y) > 0 is analytic inside the disc
DEk (z) of radius Ek about z. Indeed, let |z−zŒ| [ Ek. Combining the
assumption aq(z) [ y/(4L) [ 1/2 with Lemma 4.8, we have

e−aq(zŒ) \ e−aq(z) −2eM2 1Ek \ 1−aq(z)−2eM2 1Ek

\ 1− 6
5 max{aq(z), 10eM2 1Ek} \ e−2 max{aq(z), 10eM2 1Ek}. (5.10)

Here we used the fact that x+y [ 6
5 max{x, 5y} whenever x, y \ 0 in the

last but one step, and the fact that e−2x [ 1−(1−e−1) 2x [ 1− 6
5 x whenever

x [ 1/2 in the last step. We thus have proven that

aq(zŒ) [max{2aq(z), 20eM2 1Ek} [max 3 y
2L

,
1
k
4 [ y

4k
, (5.11)

so by Theorem 4.3, K −

q(Y, zŒ)=Kq(Y, zŒ) and Zq(Intm Y, zŒ) ] 0 for all
m ¥S and zŒ ¥DEk (z). As a consequence, K −

q(Y, · ) is analytic inside the
disc DEk (z), as claimed.

At this point, the proof of the lemma is an easy exercise. Indeed,
combining Cauchy’s theorem with the bound |K −

q(Y, zŒ)| [ e−(y/2+c0) |Y| [

e−c0 |Y|e−(y/2) diam Y, we get the estimate

:“az D
Y

K −

q(Y, zŒ)X(Y): [ a! Eak D
Y

e−(c0+y/2) |Y| X(Y)

[ a! E−ak e−(y/2) k D
Y

e−c0 |Y| X(Y). (5.12)

Bounding E−ak e−(y/2) k by E−a1 kae−k [ (ae−1E−1
1 )a, we conclude that

:“az D
Y

K −

q(Y, zŒ)X(Y): [ a! (ae−1E−1
1 )aD

Y
e−c0 |Y| X(Y). (5.13)

Inserted into the cluster expansion for s (L)
q , this gives the bound

|“azs
(L)
q (z)| [ a! (ae−1E−1

1 )a, (5.14)
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which in turn implies that

|“aze
s(L)
q (z)| [ a! (ae−1E−1

1 )a 2a |e s(L)
q (z)|. (5.15)

Combining this bound with the bound (5.8), we obtain the bound (5.6)
with a constant M0 that depends only on E and M2 1, and hence only on E
and M. L

Next we will prove Theorem B. Recall the definitions of the sets SE(m)
and UE(Q) from (2.13) and (2.14) and the fact that in Theorem B, we set
o=y/4.

Proof of Theorem B(1)–(3). Part (1) is a trivial consequence of the
fact that hm(z), rz(N), and rz(Y) are analytic functions of z through-
out O2.

In order to prove part (2), we note that z ¥So/L(q) implies that
aq(z) [ o/L=y/(4L) and hence by Theorem 4.3(ii) we have that K −

q(Y, z)
=Kq(Y, z) for any q-contour contributing to Zq(TL, z). This immediately
implies that the functions s (L)

q and z (L)
q (z) defined in (5.4) and (5.5) are ana-

lytic function in So/L(q). Next we observe that y \ 4c̃0+16 implies that
yL/8 \ y/8 \ log 4 and hence 4e−yL/4 [ e−yL/8. Since z ¥So/L(q) implies
aq(z) <. and hence hq(z) ] 0, the bounds (2.15) and (2.16) are then direct
consequences of Lemma 4.9 and the fact that “TL=”.

The bound (2.17) in part (3) finally is nothing but the bound (5.6)
from Lemma 5.1, while he bound (2.18) is proved exactly as for
Theorem A. Note that so far, we only have used that y \ y0, except for the
proof of (2.17), which through the conditions from Lemma 5.1 requires
L \ y/2, and give a constant M0 depending on E and M. L

Proof of Theorem B(4). We will again rely on analyticity and
Cauchy’s Theorem. Let Q …R and let QŒ …S be the set of corresponding
interchangeable spin states. Clearly, if m and n are interchangeable, then
z (L)

m =z (L)
n and, recalling that qm denotes the set of spins corresponding to

m ¥R, we have

XQ(z)=ZperL (z)− C
n ¥ QŒ

[z (L)
n (z)]Ld

=ZperL (z)− C
n ¥ QŒ

Z −n(TL, z). (5.16)

Pick a z0 ¥Uo/L(Q). For n ¥ QŒ, we then have an(z0) [ y/(4L), and by the
argument leading to (5.11) we have that an(z) [ y/(2L) provided y/(4L)
[ 1/2 and 2eM2 1 |z−z0 | [

1
5
y

4L . On the other hand, if m ¥S0QŒ, then
am(z0) \ y/(8L), and by a similar argument, we get that am(z) \ y/(16L) if
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y/(8L) [ 1 and 2eM2 1 |z−z0 | [
1
10
y

8L . Noting that y \ ỹ0 implies y \ 4c0+16
\ 16, we now set

E (L)=min{E, (10eM2 1Ld)−1}. (5.17)

For z ¥DE(L)(z0) and n ¥ QŒ, we then have an(z) L
2 [ y/4 and hence

Z −n(TL, z)=Zn(TL, z), implying in particular that

XQ(z)=ZbigL (z)+ C
m ¥S0QŒ

Zm(TL, z). (5.18)

Note that this implies, in particular, that XQ( · ) is analytic in DE(L)(z0).
Our next goal is to prove a suitable bound on the right hand side

of (5.18). By Lemma 4.12, the first term contributes no more than
2Ldz(z)Ld

e−yL/4, provided y \ 4c̃0+16 and L is so large that 5Lde−yL/4

[ log 2. On the other hand, since z ¥DE(L)(z0) implies that am(z) \ y/(16L)
for all m ¨ QŒ, the bound (4.74) implies that each Zm(TL, z) on the right
hand side of (5.18) contributes less than 2z(z)Ld

e−yLd−1/32 once L is so large
that 4Lde−yL/4 [ log 2. By putting all of these bounds together and using
that z(z)Ld

[ z(z0)Ld
eM2 1 |z−z0| L

d
[ e1/(10e)z(z0)Ld

by the bound (4.63) and our
definition of E (L), we get that

|XQ(z)| [ 5 |S| Ldz(z0)Ld
e−yLd−1/32 (5.19)

whenever z ¥DE(L)(z0) and L is so large that L \ y/2 and 5Lde−yL/4 [ log 2.
Increasing L if necessary to guarantee that E (L)=(10eM2 1Ld)−1 and apply-
ing Cauchy’s theorem to bound the derivatives of XQ(z), we thus get

|“azXQ(z)|z=z0
[ a! (10eM2 1)a 5 |S| Ld(a+1)z(z0)Ld

e−yLd−1/32 (5.20)

provided L \ L0, where L0=L0(d, M, y, E) is chosen in such a way that
for L \ L0, we have L \ y/2, 5Lde−yL/4 [ log 2, and (10eM2 1Ld)−1 [ E. Since
z0 ¥Uo/L(Q) was arbitrary and |S|=;m ¥R qm, this proves the desired
bound (2.20) with C0=10eM2 1=10e(1+4M). L
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